|   [1] Arnold D N, Brezzi F, Douglas Jr J. PEERS: A new mixed finite element for planar elasticity. Japan J Appl Math, 1984, 1: 347--367 
 
[2]  Arnold D N, Winther R. Mixed finite elements for elasticity. Numer Math, 2002, 92: 401--419 
 
[3]  Brenner S C, Scott  L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 1994 
 
[4]  Brenner S C, Sung  L Y. Linear finite element methods for planar linear elasticity. Math Comp, 1992, 59: 321--338 
 
[5]  Clement P. Approximation by finite element functions using local regularization. RAIRO Anal Numer, 1975, 9:  77--84 
 
[6]  Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978 
 
[7]  Crouzeix M,  Raviart D A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO, 1973, R-3: 33--75 
 
[8] Falk R S. Nonconforming finite element methods for the equations of linear elasticity. Math Comp, 1991, 57: 529--550 
 
[9] Lee L O, Lee J,  Sheen D. A lacking-free nonconforming finite element method for planar linear elasticity. Adv  Comp Math, 2003, 19: 277--291 
 
[10]  Qi H. Locking-free finite element methods for linear elasticity with pure displacement boundary condition [D]. Beijing: Academy of Mathematics and Systems Science, CAS, 2002(in Chinese) 
 
[11]  Stenberg R. A family of mixed finite elements for the elasticity problem. Numer Math, 1988, 53:  513--538 
 
[12]  Wang L H, Qi H. A locking-free finite element scheme for the planar elasticity problem. Math Numer Sinica, 2002, 24: 243--256 (in Chinese) 
 
[13]  Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J Numer Anal, 1997, 34: 640--663 
 
[14]  Chen S C, Shi D Y. Accuracy analysis for quasi-wilson element. Acta Math Sci, 2000, 20B(1): 44--48  |