|   [1]  Ashbaugh M S. Isoperimetric and universal inequalities for eigenvalues//Davies E B, Safarov Yu. Spectral Theory and Geometry 
 (Edinburgh, 1998), London Math Soc Lecture Notes, Vol 273. Cambridge: Cambridge Univ Press, 1999: 95--139 
 
[2]  Ashbaugh M S. The Universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H C Yang. Proc Indian Acad Sci Math Sci, 2002, 112: 3--30 
 
[3]  Chen Z C, Qian C L. Estimates for discrete spectrum of Laplacian operator with any order. J Univ Sci Tech China, 1990, 20: 259--266 
 
[4]  Cheng Q M, Yang H C. Inequalities for  eigenvalues of a clamped plate problem. Trans Amer Math Soc, 2006, 358: 2625--2635 
 
[5]  Deng H, Chen Z C. Inequalities for eigenvalues of biharmonic operators in weighted sobolev space. J Univ Sci and Tech China, 2003, 33: 134--143 
 
[6]  Hile G N, Protter M H. Inequalities for eigenvalues of the Laplacian. Indiana Univ  Math  J, 1980, 29: 523--538 
 
[7]  Hile G N, Yeh R Z. Inequalities for eigenvalues of the biharmonic operator. Pacific J Math, 1984, 112: 115--133 
 
[8]  Hook S M. Domain independent upper bounds for eigenvalues of elliptic operator. Trans Amer Math Soc, 1990, 318: 615--642 
 
[9]  Huang G Y, Chen W Y. Universal bounds for eigenvalues of Laplacian operator of any order. Acta Math Sci, 2010, 30B(3): 939--948 
 
[10]  Kac M. Can one hear the shape of a drum?  Amer Math Monthly, 1966, 73: 1--23 
 
[11] Ljung L. Recursive identification//Hazewinkel M, Willems J C. Stochastic Systems: The Mathematics of Filtering and Identification and Applications. Reidel: Springer, 1981: 247--283 
 
[12] Maybeck P S. Stochastic Models, Estimation, and Control III. New York: Academic Press, 1982 
 
[13]  McHale K P, Ufuktepe U. Inequalities for vibrating clamped plate problem. Turk J Math, 2001, 25: 283--298 
 
[14]  Payne L E, P\'{o}lya G, Weinberger H F. On the ratio of consecutive eigenvalues. J Math and Phis, 1956, 35: 289--298 
 
[15]  Protter M H. Can one hear the shape of a drum? Revisited. SIAM Rev, 1987, 29: 185--197 
 
[16]  Sun H J, Cheng Q M, Yang H C. Lower order eigenvalues of Dirichlet Laplacian. Manuscripta Math, 2008, 125: 139--156  |