[1] Bauschke H H, Combettes P L.Convex Analysis and Monotone Operator Theory in Hilbert Spaces. New York: Springer, 2011 [2] Bigi G, Castellani M, Pappalardo M, Passacantando M. Existence and solution methods for equilibria. European J Oper Res, 2013, 227(1): 1-11 [3] Bigi G, Passacantando M. Gap functions for quasi-equilibria. J Global Optim, 2016, 66(4): 791-810 [4] Blum E. From optimization and variational inequalities to equilibrium problems. Math Student, 1994, 63: 123-145 [5] Castellani M, Giuli M. Refinements of existence results for relaxed quasimonotone equilibrium problems. J Global Optim, 2013, 57(4): 1213-1227 [6] Contreras J, Klusch M, Krawczyk J B. Numerical solution to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Trans Power Syst, 2004, 19(1): 195-206 [7] Daniele P, Giannessi F, Maugeri A.Equilibrium Problems and Variational Models. New York: Springer, 2003 [8] Deng L, Hu R, Fang Y. Fast inertial extragradient algorithms for solving non-Lipschitzian equilibrium problems without monotonicity condition in real Hilbert spaces. J Comput Appl Math, 2023, 423: Art 114950 [9] Deng L, Hu R, Fang Y. Projection extragradient algorithms for solving nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces. Numer Algorithms, 2021, 86(1): 191-221 [10] Dinh B V. Projection algorithms for solving nonmonotone equilibrium problems in Hilbert space. J Comput Appl Math, 2016, 302: 106-117 [11] Facchinei F, Pang J S.Finite-Dimensional Variational Inequalities and Complementary Problems. New York: Springer-Verlag, 2003 [12] Giannessi F. On Minty variational principle//Giannessi F, Koml$\acute{\rm o}$si S, Rapcs$\acute{\rm a}$ T. New Trends in Mathematical Programming. Dordreccht: Kluwer, 1998, 93-99 [13] Giannessi F, Maugeri A, Pardalos P M.Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Dordrecht: Kluwer, 2001 [14] Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry,Nonexpansive Mappings. New York: Marcel Dekker, 1984 [15] He Y R. A new double projection algorithm for variational inequalities. J Comput Appl Math, 2006, 185(1): 166-173 [16] Iusem A N, Sosa W. Iterative algorithms for equilibrium problems. Optimization, 2003, 52(3): 301-316 [17] Iusem A N, Sosa W. On the proximal point method for equilibrium problem in Hilbert spaces. Optimization, 2010, 59(8): 1259-1274 [18] Jaiboon C, Kumam P. A hybrid extragradient viscosity approximation method for solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. Fixed Point Theory and Appl, 2009, 2009: Art 374815 [19] Jaiboon C, Kumam P, Humphries U W. Weak convergence theorem for an extragradient method for variational inequality, equilibrium and fixed point problems. Bull Malays Maths Sci Soc, 2009, 32(2): 173-185 [20] Kassay G, Radulescu V.Equilibrium Problems and Applications. London: Academic Press, 2018 [21] Kassay G, Reich S, Sabach S. Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J Optim, 2011, 21(4): 1319-1344 [22] Konnov I V.Equilibrium Models and Variational Inequalities. Amsterdam: Elsevier, 2007 [23] Korpelevich G M. Extragradient method for finding saddle points and other problems. Matecon, 1976, 12(4): 747-756 [24] Kumam P, Katchang P. A viscosity of extragradient approximation method for finding equilibrium problems and fixed point problems for nonexpansive mappings. Nonlinear Anal Hybrid Syst, 2009, 3(4): 475-486 [25] Kumam W, Kumam P. Hybrid iterative scheme by relaxed extragradient method for solutions of equilibrium problems and a general system of variational inequalities with application to optimization. Nonlinear Anal Hybrid Syst, 2009, 3(4): 640-656 [26] Maingé P E. Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J Math Anal Appl, 2007, 325(1): 469-479 [27] Mastroeni G. Gap functions for equilibrium problems. J Global Optim, 2003, 27(4): 411-426 [28] Mastroeni G. On Auxiliary principle for equilibrium problems//Daniele P, Giannessi F, Maugeri A. Equilibrium Problems and Variational Models. Dordrecht: Kluwer, 2003: 289-298 [29] Minty G J. On the generalization of a direct method of calculus of variations. Bull Amer Math Soc, 1967, 73: 315-321 [30] Moudafi A. On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J Math Anal Appl, 2009, 359(2): 508-513 [31] Moudafi A. Proximal point algorithm extended to equilibrium problems. J Nat Geom, 1999, 15(1/2): 91-100 [32] Muu L D. Stability property of a class of variational inequalities. Math Operationsforsch Statist Ser Optim, 1984, 15(3): 347-353 [33] Muu L D, Oettli W. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal, 1992, 18(12): 1159-1166 [34] Muu L D, Quoc T D. Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model. J Optim Theory Appl, 2009, 142(1): 185-204 [35] Nguyen V H.Lecture notes on equilibrium problems. CIUF-CUD Summer School on Optimization and Applied Mathematics Nha Trang, 2002 [36] Noor M A. Extragradient methods for pseudomonotone variational inequalities. J Optim Theory Appl, 2003, 117(3): 475-488 [37] Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Am Math Soc, 1967, 73: 591-597 [38] Quoc T D, Muu L D. Iterative methods for solving monotone equilibrium problems via dual gap functions. Comput Optim Appl, 2012, 51(2): 708-728 [39] Quoc T D, Anh P N, Muu L D. Dual extragradient algorithms extended to equilibrium problems. J Global Optim, 2012, 52(1): 139-159 [40] Quoc T D, Muu L D, Nguyen H V. Extragradient algorithms extended to equilibrium problems. Optimization, 2008, 57(6): 749-776 [41] Riech S, Sabach S. Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Comtemporary Math, 2012, 568: 225-240 [42] Saejung S, Yotkaew P. Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal, 2012, 75: 742-750 [43] Scheimberg S, Santos P S M. A relaxed projection method for finite dimensional equilibrium problems. Optimization, 2011, 60(8/9): 1193-1208 [44] Strodiot J J, Nguyen T T V, Nguyen V H. A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems. J Global Optim, 2013, 56(2): 373-397 [45] Tan B, Qin X, Yao J C. Extragradient algorithms for solving equilibrium problems on Hadamard manifolds. Appl Numer Math, 2024, 201: 187-216 [46] Van N T T, Strodiot J J, Nguyen V H. The interior proximal extragradient method for solving equilibrium problems. J Global Optim, 2009, 44(2): 175-192 [47] Van N T T, Strodiot J J, Nguyen V H, Voung P T. An extragradient-type method for solving nonmonotone quasi-equilibrium problems. Optimization, 2018, 67(5): 651-664 [48] Voung P T, Strodiot J J, Nguyen V H. Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. J Optim Theory Appl, 2012, 155(2): 605-627 [49] Ye M, He Y. A double projection method for solving variational inequalities without monotonicity. Comput Optim Appl,2015, 60: 140-150 |