数学物理学报(英文版) ›› 2025, Vol. 45 ›› Issue (4): 1659-1673.doi: 10.1007/s10473-025-0422-1

• • 上一篇    下一篇

HAUSDORFF DIMENSION OF RECURRENCE SETS FOR MATRIX TRANSFORMATIONS OF TORI

Zhangnan HU1, Bing LI2,*   

  1. 1. College of Science, China University of Petroleum, Beijing 102249, China;
    2. School of Mathematics, South China University of Technology, Guangzhou 510641, China
  • 收稿日期:2024-03-29 修回日期:2024-08-15 出版日期:2025-10-10 发布日期:2025-10-10

HAUSDORFF DIMENSION OF RECURRENCE SETS FOR MATRIX TRANSFORMATIONS OF TORI

Zhangnan HU1, Bing LI2,*   

  1. 1. College of Science, China University of Petroleum, Beijing 102249, China;
    2. School of Mathematics, South China University of Technology, Guangzhou 510641, China
  • Received:2024-03-29 Revised:2024-08-15 Online:2025-10-10 Published:2025-10-10
  • Contact: *Bing LI, E-mail: scbingli@scut.edu.cn
  • About author:Zhangnan HU, E-mail: hnlgdxhzn@163.com
  • Supported by:
    Science Founda-tion of China University of Petroleum, Beijing (2462023SZBH013), the China Postdoctoral Science Foundation (2023M743878) and the Postdoctoral Fellowship Program of CPSF (GZB20240848). Li's research was supported partially by the NSFC (12271176) and the Guangdong Natural Science Foundation (2024A1515010946).

摘要: Let $T\colon\mathbb{T}^d\to \mathbb{T}^d$, defined by $T x=Ax$ (mod 1), where $A$ is a $d\times d$ integer matrix with eigenvalues $1<|\lambda_1|\le|\lambda_2|\le\cdots\le|\lambda_d|$. We investigate the Hausdorff dimension of the recurrence set $$R(\psi):=\{x\in\mathbb{T}^d\colon T^nx\in B(x,\psi(n)) for infinitely many n\}$$ for $\alpha\ge\log|\lambda_d/\lambda_1|$, where $\psi$ is a positive decreasing function defined on $\mathbb{N}$ and its lower order at infinity is $\alpha=\liminf\limits_{n\to\infty}\frac{-\log \psi(n)}{n}$. In the case that $A$ is diagonalizable over $\mathbb{Q}$ with integral eigenvalues, we obtain the dimension formula.

关键词: quantitative recurrence properties, Hausdorff dimension, matrix transformations

Abstract: Let $T\colon\mathbb{T}^d\to \mathbb{T}^d$, defined by $T x=Ax$ (mod 1), where $A$ is a $d\times d$ integer matrix with eigenvalues $1<|\lambda_1|\le|\lambda_2|\le\cdots\le|\lambda_d|$. We investigate the Hausdorff dimension of the recurrence set $$R(\psi):=\{x\in\mathbb{T}^d\colon T^nx\in B(x,\psi(n)) for infinitely many n\}$$ for $\alpha\ge\log|\lambda_d/\lambda_1|$, where $\psi$ is a positive decreasing function defined on $\mathbb{N}$ and its lower order at infinity is $\alpha=\liminf\limits_{n\to\infty}\frac{-\log \psi(n)}{n}$. In the case that $A$ is diagonalizable over $\mathbb{Q}$ with integral eigenvalues, we obtain the dimension formula.

Key words: quantitative recurrence properties, Hausdorff dimension, matrix transformations