[1] Allen D, Baker S, Bárány B. Recurrence rates for shifts of finite type. Adv Math, 2025, 460: Art 110039 [2] Baker S, Farmer M. Quantitative recurrence properties for self-conformal sets. Proc Amer Math Soc, 2021, 149: 1127-1138 [3] Barreira L, Saussol B. Hausdorff dimension of measures via Poincaré recurrence. Comm Math Phys, 2001, 219: 443-463 [4] Boshernitzan M D. Quantitative recurrence results. Invent Math, 1993, 113(3): 617-631 [5] Chang Y, Wu M, Wu W. Quantitative recurrence properties and homogeneous self-similar sets. Proc Amer Math Soc, 2019, 147(4): 1453-1465 [6] Chernov N, Kleinbock D. Dynamical Borel-Cantelli lemmas for Gibbs measures. Israel J Math, 2001, 122: 1-27 [7] Everest G, Ward T.Heights of Polynomials and Entropy in Algebraic Dynamics. London: Springer-Verlag, 1999 [8] Falconer K J.Techniques in Fractal Geometry. Chichester: John Wiley and Sons, 1997 [9] Fern$\acute{{\rm a}}$ndez J L, Meli$\acute{{\rm a}}$n M V, Pestana D. Quantitative mixing results and inner functions. Math Ann, 2007, 337(1): 233-251 [10] He Y, Liao L. Quantitative recurrence properties for piecewise expanding maps on $[0,1]^d$. Annali Scuola Normale Superiore di Pisa-Classe di Scienze,2024, 2024: 1-40 [11] Hill R, Velani S. The ergodic theory of shrinking targets. Invent Math, 1995, 119(1): 175-198 [12] Hill R, Velani S. The shrinking target problem for matrix transformations of tori. J London Math Soc, 1999, 60(2): 381-398 [13] Hu Z, Persson T. Hausdorff dimension of recurrence sets. Nonlinearity, 2024, 37: Art 055010 [14] Hussain M, Li B, Simmons D, Wang B.Dynamical Borel-Cantelli lemma for recurrence theory. Ergodic Theory Dynam Systems, 2022, 42: 1994-2008 [15] Kirsebom M, Kunde P, Persson T. On shrinking targets and self-returning points. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 2023, 24(3): 1499-1535 [16] Kleinbock D, Zheng J. Dynamical Borel-Cantelli lemma for recurrence under Lipschitz twists. Nonlinearity, 2023, 36: 1434-1460 [17] Li B, Liao L, Velani S, Zorin E. The shrinking target problem for matrix transformations of tori: revisiting the standard problem. Adv Math, 2023, 421: Art 108994 [18] Li B, Wang B, Wu J, Xu J. The shrinking target problem in the dynamical system of continued fractions. Proc Lond Math Soc, 2014, 108(3): 159-186 [19] Seuret S, Wang B. Quantitative recurrence properties in conformal iterated function systems. Adv Math, 2015, 280: 472-505 [20] Tan B, Wang B.Quantitative recurrence properties for beta-dynamical system. Adv Math, 2011, 228: 2071-2097 [21] Walters P.An Introduction to Ergodic Theory. Berlin: Springer-Verlag, 1982 [22] Wu Y, Yuan N. Quantitative recurrence problem on some Bedford-McMullen carpets. J Math Anal Appl, 2025, 543(2): Art 128938 [23] Yuan N, Li B. Hausdorff dimensions of recurrent and shrinking target sets under Lipschitz functions for expanding Markov maps. Dyn Syst, 2023, 38(3): 365-394 [24] Yuan N, Wang S. Modified shrinking target problem for matrix transformations of tori. Fractals, 2024, 32(5): Art 2450076 |