数学物理学报(英文版) ›› 2025, Vol. 45 ›› Issue (5): 1723-1751.doi: 10.1007/s10473-025-0501-3

• •    下一篇

GLOBAL WELL-POSEDNESS OF 3D INCOMPRESSIBLE HYPER-DISSIPATIVE HALL-MHD EQUATIONS IN ANISOTROPIC BESOV SPACES

Dezai MIN*, Qingkai WANG, Gang WU, Zhuoya YAO   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 收稿日期:2024-06-21 修回日期:2024-10-05 出版日期:2025-09-25 发布日期:2025-10-14

GLOBAL WELL-POSEDNESS OF 3D INCOMPRESSIBLE HYPER-DISSIPATIVE HALL-MHD EQUATIONS IN ANISOTROPIC BESOV SPACES

Dezai MIN*, Qingkai WANG, Gang WU, Zhuoya YAO   

  1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-06-21 Revised:2024-10-05 Online:2025-09-25 Published:2025-10-14
  • Contact: *Dezai Min, E-mail: mindezai18@mails.ucas.ac.cn
  • About author:Qingkai Wang, E-mail: wangqingkai17@mails.ucas.ac.cn; Gang Wu, E-mail: wugang2011@ucas.ac.cn; Zhuoya Yao, E-mail: yaozhuoya19@mails.ucas.ac.cn
  • Supported by:
    Wu's research was supported by the NSFC (11771423, 12371231).

摘要: In this paper, we investigate the well-posedness result of the three-dimensional incompressible hyper-dissipative Hall-Magnetohydrodynamic equations with small anisotropic derivative. Making using of anisotropic Littlewood-Paley theory, we conclude that the hyper-dissipative Hall-MHD system has a unique global solution provided that $$\begin{align*} \left(\|J_{0}\|_{\mathcal{B}^{1-2\alpha}_{2}}+\|(\Lambda_{h}^{-1}\partial_{3}u_{0}, B_{0}^{h})\|_{\mathcal{B}^{1-2\alpha}_{2}}\right) \cdot F(u_{0}, B_{0}) \end{align*}$$ is sufficiently small. Here, $F(u_{0}, B_{0})$ is a bounded function, which depends on $\|(u_{0}, B_{0})\|_{\mathcal{B}^{1-2\alpha}_{2}}$ and $\|u_{0}^{h}\|_{H^{1}}$.

关键词: hyper-dissipative Hall-MHD equations, global well-posedness, Littlewood-Paley theory

Abstract: In this paper, we investigate the well-posedness result of the three-dimensional incompressible hyper-dissipative Hall-Magnetohydrodynamic equations with small anisotropic derivative. Making using of anisotropic Littlewood-Paley theory, we conclude that the hyper-dissipative Hall-MHD system has a unique global solution provided that $$\begin{align*} \left(\|J_{0}\|_{\mathcal{B}^{1-2\alpha}_{2}}+\|(\Lambda_{h}^{-1}\partial_{3}u_{0}, B_{0}^{h})\|_{\mathcal{B}^{1-2\alpha}_{2}}\right) \cdot F(u_{0}, B_{0}) \end{align*}$$ is sufficiently small. Here, $F(u_{0}, B_{0})$ is a bounded function, which depends on $\|(u_{0}, B_{0})\|_{\mathcal{B}^{1-2\alpha}_{2}}$ and $\|u_{0}^{h}\|_{H^{1}}$.

Key words: hyper-dissipative Hall-MHD equations, global well-posedness, Littlewood-Paley theory

中图分类号: 

  • 35A01