[1] Böröczky K J, Lutwak E, Yang D, Zhang G Y. The log-Brunn-Minkowski inequality. Adv Math, 2012, 231(3/4): 1974-1997  [2] Böröczky K J, Lutwak E, Yang D, Zhang G Y. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26(3): 831-852  [3] Böröczky K J, Kalantzopoulos P. Log-Brunn-Minkowski inequality under symmetry. Trans Amer Math Soc, 2022, 375(8): 5987-6013  [4] Böröczky K J. The logarithmic Minkowski conjecture and the $L_p$-Minkowski problem. Adv Anal Geom, 2023, 9: 83-118  [5] Colesanti A, Livshyts G V, Marsiglietti A. On the stability of Brunn-Minkowski type inequalities. J Funct Anal, 2017, 273(3): 1120-1139  [6] Costa M H, Cover T M. On the similarity of the entropy power inequality and the Brunn-Minkowski inequality. IEEE Trans Inform Theory, 1984, 30(6): 837-839  [7] Cianchi A, Lutwak E, Yang D, Zhang G Y. A unified approach to Cramér-Rao inequalities. IEEE Trans Inform Theory, 2014, 60(1): 643-650  [8] Cifre M A H, Alonso-Gutiérrez D. Estimates for the integrals of powered $i$-th mean curvatures Bianchi G, Colesanti A, Gronchi P. Analytic Aspects of Convexity. Cham: Springer, 2018: 19-37  [9] Firey W J. Shapes of worn stones. Mathematika, 1974, 21(1): 1-11  [10] Green M, Osher S. Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian J Math, 1999, 3(3): 659-676  [11] Gage M E. Evolving plane curves by curvature in relative geometries. Duke Math J, 1993, 72(2): 441-466  [12] Gardner R. The Brunn-Minkowski inequality. Bull Amer Math Soc, 2002, 39(3): 355-405  [13] Hu J Q, Xiong G. A new affine invariant geometric functional for polytopes and its associated affine isoperimetric inequalities. Int Math Res Not IMRN, 2021, 12: 8977-8995  [14] Lutwak E, Lv S, Yang D, Zhang G Y. Extensions of Fisher information and Stam's inequality. IEEE Trans Inform Theory, 2012, 58(3): 1319-1327  [15] Lutwak E, Lv S, Yang D, Zhang G Y. Affine moments of a random vector. IEEE Trans Inform Theory, 2013, 59(9): 5592-5599  [16] Minkowski H. Volumen und Oberfläche (German). Math Ann, 1903, 57(4): 447-495  [17] Ma L. A new proof of the log-Brunn-Minkowski inequality. Geom Dedicata, 2015, 177: 75-82  [18] Ma L, Zeng C N, Wang Y L. The log-Minkowski inequality of curvature entropy. Proc Amer Math Soc, 2023, 151(8): 3587-3600  [19] Putterman E. Equivalence of the local and global versions of the $L^p$-Brunn-Minkowski inequality. J Funct Anal, 2021, 280(9): 108956-108976  [20] Ren D. An Introduction to Integral Geometry. Shanghai: Science and Technology Press, 1988  [21] Rotem L. A letter: The log-Brunn-Minkowski inequality for complex bodies. arXiv.org/abs/1412.5321  [22] Saroglou C. Remarks on the conjectured log-Brunn-Minkowski inequality. Geom Dedicata, 2015, 177(1): 353-365  [23] Stancu A. The discrete planar $L_0$-Minkowski problem. Adv Math, 2002, 167(1): 160-174  [24] Santaló L A. Integral Geometry and Geometric Probability. Cambridge: Cambridge University Press, 2004  [25] Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014  [26] Tao J Y, Xiong G, Xiong J W. The logarithmic Minkowski inequality for cylinders. Proc Amer Math Soc, 2023, 151(5): 2143-2154  [27] Thompson A C. Minkowski Geometry. Cambridge: Cambridge University Press, 1996  [28] Xu W X. Entropy of chord distribution of convex bodies. Proc Amer Math Soc, 2019, 147(7): 3131-3141  [29] Zhang G Y. A lecture on integral geometry. Proceedings of the 14th International Workshop on Differential Geometry and the 3rd KNUGRG-OCAMI Differential Geometry Workshop [Volume 14]. Natl Inst Math Sci (NIMS), Taejŏn, 2010: 13-30  [30] Zeng C N. On Bonnesen-style Aleksandrov-Fenchel inequalities in $\mathbb{R}^n$. Bull Korean Math Soc, 2017, 54(3): 799-816  [31] Zeng C N, Wang Y L, Ma L. The log-Minkowski inequality of curvature entropy for convex bodies. Sci Sin Math (in Chinese), 2024, 54(6): 823-838  [32] Zhu G X. The logarithmic Minkowski problem for polytopes. Adv Math, 2014, 262: 909-931 |