Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (1): 143-152.doi: 10.1007/s10473-025-0111-0

Previous Articles     Next Articles

LOG-CONCAVITY OF THE FIRST DIRICHLET EIGENFUNCTION OF SOME ELLIPTIC DIFFERENTIAL OPERATORS AND CONVEXITY INEQUALITIES FOR THE RELEVANT EIGENVALUE

Andrea Colesanti   

  1. Dipartimento di Matematica & Informatica 'U. Dini', Universit$\grave{a}$ degli Studi di Firenze, Viale Morgagni 67/A-50134, Firenze, Italy
  • Received:2024-08-30 Published:2025-02-06
  • About author:Andrea Colesanti, E-mail,: andrea.colesanti@unifi.it
  • Supported by:
    Disuguaglianze analitiche e geometriche, funded by the Gruppo per Analisi Matematica la Probabilità e le loro Applicazioni.

Abstract: Given an open bounded subset $\Omega$ of $\mathbb{R}^{n}$ we consider the eigenvalue problem $\begin{equation*} \left\{ \begin{array}{lll} \Delta u-\langle\nabla u,\nabla V\rangle=-\lambda_V u,\quad u>0\quad&\mbox{in $\Omega$,}\\ u=0\quad&\mbox{on $\partial\Omega$,} \end{array} \right. \end{equation*}$ where $V$ is a given function defined in $\Omega$ and $\lambda_V$ is the relevant eigenvalue. We determine sufficient conditions on $V$ such that if $\Omega$ is convex, the solution $u$ is log-concave. We also determine sufficient conditions ensuring that $\lambda_V$, as a function of the set $\Omega$, verifies a convexity inequality with respect to the Minkowski addition of sets.

Key words: eigenvalue, log-concavity, elliptic operator, Brunn-Minkowski inequality, convex body

CLC Number: 

  • 35E10
Trendmd