[1] Adler R, Taylor J. Random Fields and Geometry. New York: Springer, 2007  [2] Alesker S, Bernig A. Convolution of valuations on manifolds. J Differential Geom, 2017, 107: 203-240  [3] Chern S S, Lashof R. On the total curvature of immersed manifolds. American Journal of Mathematics, 1957, 79: 306-318  [4] Diaconis P W, Eaton M L, Lauritzen S L. Finite de finetti theorems in linear models and multivariate analysis. Scandinavian Journal of Statistics, 1992, 19: 289-315  [5] Fu J H G, Algebraic integral geometry// Gallego E, Solanes G. Integral Geometry and Valuations. Adv Courses Math CRM Barcelona. Basel: Birkhauser, 2014: 47-112  [6] Fu J H G. Integral geometric regularity// Jensen E B V, Kiderlen M. Tensor Valuations and Their Applications in Stochastic Geometry and Imaging. Cham: Springer, 2017: 261-299  [7] Fu J H G, Wannerer T. Riemannian curvature measures. Geom Funct Anal, 2019, 29: 343-381  [8] Fu J H G. A kinematic inequality. in preparation  [9] Klain D, Rota G C. Introduction to Geometric Probability. Cambridge: Cambridge University Press, 1997  [10] Taylor J, Adler R. Gaussian processes, kinematic formulae and Poincaré's limit. Ann Probab, 2009, 37: 1459-1482  [11] Wilf H S. Generatingfunctionology. Boston: Academic Press, 1994  [12] Zähle M. Absolute curvature measures. Math Nachr, 1989, 140: 83-90 |