Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (5): 2010-2028.doi: 10.1007/s10473-025-0512-0

Previous Articles     Next Articles

MULTIPLE POSITIVE SOLUTIONS FOR THE GENERALIZED QUASILINEAR SCHRÖDINGER EQUATION IN $\mathbb{R}^N$

Yongpeng CHEN1,2, Zhipeng YANG3,4,*   

  1. 1. Yunnan Key Laboratory of Modern Analytical Mathematics and Applications, Yunnan Normal University, Kunming 650500, China;
    2. School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China;
    3. Department of Mathematics, Yunnan Normal University, Kunming 650500, China;
    4. Yunnan Key Laboratory of Modern Analytical Mathematics and Applications, Yunnan Normal University, Kunming 650500, China
  • Received:2024-01-04 Revised:2024-11-19 Online:2025-09-25 Published:2025-10-14
  • Contact: *Zhipeng Yang, E-mail: yangzhipeng326@163.com
  • About author:Yongpeng Chen, E-mail: yongpengchen@mail.bnu.edu.cn
  • Supported by:
    Chen's research was supported by the NSFC (12161007) and the Guangxi Natural Science Foundation Project (2023GXNSFAA026190). Yang's research was supported by the National Natural Science Foundation of China (12301145, 12261107), the Yunnan Fundamental Research Projects (202301AU070144, 202401AU070123).

Abstract: In this paper, we investigate the generalized quasilinear Schrödinger equation: $$ -\operatorname{div}\left(g^2(u) \nabla u\right)+g(u) g^{\prime}(u)|\nabla u|^2 +u=P(\varepsilon x) |u|^{\\\alpha p-2}u, \quad x \in \mathbb{R}^N, $$ where $N>3$, $g\!\!:\mathbb{R} \rightarrow \mathbb{R}^{+}$ is a $C^1$ even function, $g(0)=1$, $g^{\prime}(s) \geq 0$ for all $s \geq 0$, $g(s)=\beta|s|^{\alpha-1}+O\left(|s|^{\gamma-1}\right)$ as $s \rightarrow \infty$ for some constants $\alpha \in[1,2]$, $\beta>0$, $\gamma<\alpha$ and $(\alpha-1) g(s) \geq g^{\prime}(s) s$ for all $s \geq 0$, $\varepsilon>0$ is a positive parameter, and $p \in\left(2,2^*\right)$. We will study the impact of the nonlinearity's coefficient $P(x)$ on the quantity of positive solutions.

Key words: variational methods, generalized quasilinear equation

CLC Number: 

  • 35J62
Trendmd