[1] D'Abbicco M. Small data solutions for the Euler-Poisson-Darboux equation with a power nonlinearity. J Differential Equations, 2021, 286: 531-556 [2] D'Abbicco M. The threshold of effective damping for semilinear wave equations. Math Methods Appl Sci, 2015, 38(6): 1032-1045 [3] D'Abbicco M, Lucente S, Reissig M. Semilinear wave equations with effective damping. Chin Ann Math Ser B, 2013, 34: 345-380 [4] D'Abbicco M, Lucente S, Reissig M. A shift in the Strauss exponent for semilinear wave equations with a not effective damping. J Differential Equations, 2015, 259: 5040-5073 [5] Fujita H. On the blowing up of solutions of the Cauchy Problem for $u_{t}=\Delta u+u^{1+\alpha}$. J Fac Sci Univ Tokyo, 1966, 13: 109-124 [6] Galstian A. Global existence for the one-dimensional second order semilinear hyperbolic equations. J Math Anal Appl, 2008, 344(1): 76-98 [7] Georgiev V, Lindblad H, Sogge C D. Weighted Strichartz estimates and global existence for semi-linear wave equations. Amer J Math, 1997, 119: 1291-1319 [8] He D Y, Li Q Q, Yin H C.Global small data weak solutions of 2-D semilinear wave equations with scale-invariant damping, II. arXiv: 2503.19438 [9] He D Y, Witt I, Yin H C. On the global solution problem for semilinear generalized Tricomi equations, I. Calc Var Partial Differential Equations, 2017, 56(2): Paper 21 [10] He D Y, Witt I, Yin H C. On semilinear Tricomi equations with critical exponents or in two space dimensions. J Differential Equations, 2017, 263(12): 8102-8137 [11] He D Y, Witt I, Yin H C. On the Strauss index of semilinear Tricomi equation. Commun Pure Appl Anal, 2020, 19(10): 4817-4838 [12] He D Y, Witt I, Yin H C. On the global solution problem of semilinear generalized Tricomi equations, II. Pacific J Math, 2021, 314(1): 29-80 [13] He D Y, Witt I, Yin H C. Finite time blowup for the 1-D semilinear generalized Tricomi equation with subcritical or critical exponents. Methods Appl Anal, 2021, 28(3): 313-324 [14] Ikeda M, Sobajima M. Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data. Math Ann, 2018, 372(3/4): 1017-1040 [15] Lai N A, Takamura H, Wakasa K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263(9): 5377-5394 [16] Lai N A, Zhou Y. Global existence for semilinear wave equations with scaling invariant damping in 3-D. Nonlinear Anal, 2021, 210: Paper 112392 [17] Li Q Q, Wang D H, Yin H C.Global small data weak solutions of 2-D semilinear wave equations with scale-invariant damping. arXiv: 2503.18677 [18] Sogge C D.Fourier Integrals in Classical Analysis. Cambridge: Cambridge Univ Press, 1993 [19] Tu Z H, Lin J Y.A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent. arXiv: 1709.00866 [20] Palmieri A, Reissig M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differential Equations, 2019, 266(2/3): 1176-1220 [21] Tu Z H, Lin J Y. Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case. Differential Integral Equations, 2019, 32(5/6): 249-264 [22] Wakasugi Y.Critical exponent for the semilinear wave equation with scale invariant damping//Ruzhansky M, Turunen V. Fourier Analysis: Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations. Cham: Birkhäuser, 2014: 375-390 [23] Yagdjian K. Global existence for the n-dimensional semilinear Tricomi-type equations. Comm Partial Diff Equations, 2006, 31: 907-944 [24] Yagdjian K. The self-similar solutions of the Tricomi-type equations. Z angew Math Phys, 2007, 58: 612-645 |