[1] Solli D R, Ropers C, Koonath P, Jalali B. Optical rogue waves. Nature2007, 450: 1054-1057 [2] Kibler B, Fatome J, Finot C, et al. The peregrine soliton in nonlinear fibre optics. Nature Physics, 2010, 6(10): 790-795 [3] Akhmediev N, Soto-Crespo J M, Ankiewicz A, Devine N. Early detection of rogue waves in a chaotic wave field. Phys Lett A, 2011, 375(33): 2999-3001 [4] Lecaplain C, Grelu P. Rogue waves among noiselike-pulse laser emission: An experimental investigation. Phys Rev A, 2014, 90(1): 013805 [5] Bailung H, Sharma S, Nakamura Y. Observation of peregrine solitons in a multicomponent plasma with negativeions. Phys Rev Lett, 2011, 107: 255005 [6] Tsai Y Y, Tsai J Y, Lin I. Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms. Nat Phys, 2016, 12(6): 573-577 [7] Pathak P, Sharma S, Nakamura Y, Bailung H. Observation of ion acoustic multi-peregrine solitons in multicomponent plasma with negative ions. Phys Lett A, 2017, 381(48): 4011-4018 [8] Merriche A, Tribeche M. Electron-acoustic rogue waves in a plasma with tribeche-tsallis-cairns distributed electrons. Ann Phys, 2017, 376: 436-447 [9] Pethick C J, Smith H.Bose-Einstein Condensation in Dilute Gases. Cambridge: Cambridge University Press, 2008 [10] Carretero-González R, Frantzeskakis D, Kevrekidis P. Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques. Nonlinearity,2008, 21(7): 139-202 [11] Bludov Y V, Konotop V V, Akhmediev N. Matter rogue waves. Phys Lett A, 2009, 80(3): 033610 [12] Manikandan K, Muruganandam P, Senthilvelan M, Lakshmanan M. Manipulating matter rogue waves and breathers in Bose-Einstein condensates. Phys Rev E, 2014, 90(6): 062905 [13] Yan Z. Financial rogue waves. Commun Theor Phys, 2010, 54: 947-949 [14] Yan Z. Vector financial rogue waves. Phys Lett A, 2011, 375(48): 4274-4279 [15] Shats M, Punzmann H, Xia H. Capillary rogue waves. Phys Rev Lett, 2010, 104(10): 104503 [16] Pelinovsky E, Kharif C. Extreme Ocean Waves. New York: Springer, 2016 [17] Fochesato C, Grilli S, Dias F. Numerical modeling of extreme rogue waves generated by directional energy focusing. Wave Motion, 2007, 44(5): 395-416 [18] Pelinovsky E, Kharif C, Talipova T. Large-amplitude long wave interaction with a vertical wall. Eur J Mech B-Fluids, 2008, 27(4): 409-418 [19] Pelinovsky E, Shurgalina E, Chaikovskaya N. The scenario of a single freak wave appearance in deep water-dispersive focusing mechanism framework. Nat Hazards Earth Syst Sci, 2011, 11(1): 127-134 [20] Peregrine D H. Water waves, nonlinear Schrödinger equations and their solutions. J Aust Math Soc B,1983, 25(1): 16-43 [21] Yang B, Yang J. Rogue wave patterns in the nonlinear Schrödinger equation. Physics D,2021, 419: 132850 [22] Lin H, Ling L. Rogue wave patterns associated with Adler-Moser polynomials featuring multiple roots in the nonlinear Schrödinger equation. Stud Appl Math,2024, 154(1): e12782 [23] Xu S, He J, Wang L. The Darboux transformation of the derivative nonlinear Schrödinger equation. J Phys A-Math Theor,2011, 44: 305203 [24] Chan H N, Chow K W, Kedziora D J,et al. Rogue wave modes for a derivative nonlinear Schrödinger model. Phys Rev E,2014, 89(3): 032914 [25] Ankiewicz A, Soto-Crespo J, Akhmediev N. Rogue waves and rational solutions of the Hirota equation. Phys Rev E, 2010, 81(4): 046602 [26] Ankiewicz A, Akhmediev N, Soto-Crespo J. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Phys Rev E, 2010, 82(2): 026602 [27] Wen X Y, Yan Z. Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation. J Math Phys, 2018, 59(7): 073511 [28] Baronio F, Degasperis A, Conforti M, Wabnitz S. Solutions of the vector nonlinear Schrödinger equations: Evidence for deterministic rogue waves. Phys Rev Lett,2012, 109(4): 044102 [29] Chen S, Mihalache D. Vector rogue waves in the Manakov system: Diversity and compossibility. J Phys A Math Theor, 2015, 48(21): 215202 [30] Ling L, Guo B, Zhao L. High-order rogue waves in vector nonlinear Schrödinger equations. Phys Rev E,2014, 89(4): 041201 [31] Yang B, Yang J K. Rogue wave patterns associated with Okamoto polynomial hierarchies. Stud Appl Math, 2023, 151(1): 60-115 [32] Ye Y, Zhou Y, Chen S, et al. General rogue wave solutions of the coupled Fokas-Lenells equations and non-recursive Darboux transformation. Proc R Soc A-Math Phys Eng Sci, 2019, 475(2224): 20180806 [33] Ling L, Su H. Rogue waves and their patterns for the coupled Fokas-Lenells equations. Physica D, 2024, 461: 134111 [34] Zhang G Q, Ling L M, Yan Z Y. Multi-component nonlinear Schrödinger equations with nonzero boundary conditions: Higher-order vector Peregrine solitons and asymptotic estimates. J Nonlinear Sci,2021, 31(5): Art 81 [35] Zhang G, Ling L, Yan Z, Konotop V V. Parity-time-symmetric rational vector rogue waves of the $n$-component nonlinear schrödinger equation. Chaos,2021, 31(6): 063120 [36] Wang L, He J, Erdélyi R. Rational solutions of multi-component nonlinear Schrödinger equation and complex modified kdv equation. Math Meth Appl Sci,2022, 45(9): 5086-5110 [37] Zhang G X, Huang P, Feng B F, Wu C F. Rogue waves and their patterns in the vector nonlinear Schrödinger equation. J Nonlinear Sci,2023, 33: Art 116 [38] Lin H, Ling L. Rogue wave pattern of multi-component derivative nonlinear Schrödinger equations. Chaos,2024, 34: 043126 [39] Yang B, Yang J K. Universal rogue wave patterns associated with the Yablonskii-Vorob'ev polynomial hierarchy. Physica D, 2021, 425: 132958 [40] Yang B, Yang J. Rogue wave patterns associated with Adler-Moser polynomials in the nonlinear Schrödinger equation. Appl Math Lett,2024, 148: 108871 [41] Ablowitz M J, Prinari B, Trubatch A D.Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge: Cambridge University Press, 2004 [42] Clarkson P A. Vortices and polynomials. Stud Appl Math, 2009, 123: 37-62 [43] Kajiwara K, Ohta Y. Determinant structure of the rational solutions for the Painlevé II equation. J Math Phys,1996, 37(9): 4693-4704 [44] Clarkson P A, Mansfield E L. The second Painlevé equation its hierarchy and associated special polynomials. Nonlinearity,2003, 16(3): R1-R26 [45] Okamoto K. Studies on the Painlevé equations: III. Second and fourth Painlevé equations ${\rm P}_{\rm II}$ and P$_{\rm IV}$. Math Ann,1986, 275: 221-255 [46] Clarkson P A. The fourth Painlevé equation and associated special polynomials. J Ath Phys,2003, 44(11): 5350-5374 [47] Filipuk G V, Clarkson P A. The symmetric fourth Painlevé hierarchy and associated special polynomials. Stud Appl Math,2008, 121(2): 157-188 [48] Bertola M, Bothner T. Zeros of large degree Vorob'ev-Yablonski polynomials via a Hankel determinant identity. Int Math Res Not, 2015, 2015(19): 9330-9399 [49] Balogh F, Bertola M, Bothner T. Hankel determinant approach to generalized Vorob'ev-Yablonski polynomials and their roots. Constr Approx, 2016, 44(3): 417-453 [50] Balogoun M, Bertola M.Rational solutions of Painlevé V from Hankel determinants and the asymptotics of their pole locations. arXiv: 2411.08853 [51] Lin H, Ling L. Large-time lump patterns of Kadomtsev-Petviashvili I equation in a plasma analyzed via vector one-constraint method. J Math Phys, 2024, 65: 043505 |