[1] Alexandre R, Hérau F, Li W X. Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff. J Math Pures Appl,2019, 126(9): 1-71 [2] Alexandre R, Morimoto Y, Ukai S, et al. Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198(1): 39-123 [3] Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J Funct Anal, 2012, 262(3): 915-1010 [4] Chen H, Hu X, Li W X, Zhan J. The Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Sci China Math, 2022, 65(3): 443-470 [5] Chen H, Li W X, Xu C J. Gevrey hypoellipticity for a class of kinetic equations. Comm Partial Differential Equations, 2011, 36(4): 693-728 [6] Chen J L, Li W X, Xu C J. Sharp regularization effect for the non-cutoff Boltzmann equation with hard potentials. Ann Inst H Poincaré C Anal Non Linéaire,2025, 42(4): 933-970 [7] Desvillettes L. About the regularizing properties of the non-cut-off Kac equation. Comm Math Phys, 1995, 168(2): 417-440 [8] Duan R, Li W X, Liu L. Gevrey regularity of mild solutions to the non-cutoff Boltzmann equation. Adv Math, 2022, 395: Paper 108159 [9] Duan R, Liu S, Sakamoto S, Strain R M. Global mild solutions of the Landau and non-cutoff Boltzmann equations. Comm Pure Appl Math, 2021, 74(5): 932-1020 [10] Gressman P T, Strain R M. Global classical solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24(3): 771-847 [11] Imbert C, Silvestre L. The weak Harnack inequality for the Boltzmann equation without cut-off. J Eur Math Soc (JEMS), 2020, 22(2): 507-592 [12] Jiang N, Xu C J, Zhao H. Incompressible Navier-Stokes-Fourier limit from the Boltzmann equation: Classical solutions. Indiana Univ Math J, 2018, 67(5): 1817-1855 [13] Lions P L. On Boltzmann and Landau equations. Philos Trans Roy Soc London Ser A, 1994, 346(1679): 191-204 [14] Lions P L, Masmoudi N. From the Boltzmann equations to the equations of incompressible fluid mechanics. I. Arch Ration Mech Anal, 2001, 158(3): 173-193 [15] Lions P L, Masmoudi N. From the Boltzmann equations to the equations of incompressible fluid mechanics. II. Arch Ration Mech Anal, 2001, 158(3): 195-211 [16] Saint-Raymond L.Hydrodynamic Limits of the Boltzmann Equation. Berlin: Springer-Verlag, 2009 |