[1] Arsenév A. Global existence of a weak solution of Vlasov system of equations. USSR Comp Math Math Phys,1975, 15: 131-143 [2] Bardos C, Degond P. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Annales de l'Institut Henri Poincaré C Analyse nonlinéaire,1985, 2: 101-118 [3] Bedrossian J, Masmoudi N. Inviscid damping and the asymptotic stability of planar shear flows in the $2D$ Euler equations. Publ Math Inst Hautes études Sci,2015, 122: 195-300 [4] Bedrossian J. Nonlinear echoes and Landau damping with insufficient regularity. Tunis J of Math, 2021, 3: 121-205 [5] Bedrossian J, Masmoudi N, Mouhot C. Linearized wave-damping structure of Vlasov-Poisson in $\mathbb{R}^3$. SIAM J Math Anal, 2022, 54: 4379-4406 [6] Bedrossian J, Masmoudi N, Mouhot C. Landau damping in finite regularity for unconfined systems with screened interactions. Comm Pure Appl Math, 2018, 71: 537-576 [7] Bedrossian J, Masmoudi N, Mouhot C. Landau damping: Paraproducts and Gevrey regularity. Ann PDE, 2016, 2: Art 4 [8] Bouchut F. Global weak solution of the Vlasov-Poisson system for small electrons mass. Comm Partial Differential Equations, 1991, 16: 1337-1365 [9] Chen Q, Wei D, Zhang P, Zhang Z.Nonlinear inviscid damping for 2-D inhomogeneous incompressible Euler equations. J Eur Math Soc, 2025. DOI: 10.4171/JEMS/1608 [10] Choi S H, Ha S Y, Lee H. Dispersion estimates for the two-dimensional Vlasov-Yukawa system with small data. J Differential Equations, 2011, 250: 515-550 [11] Flynn P, Ouyang Z, Pausader B, Widmayer K. Scattering map for the Vlasov-Poisson system. Peking Math J, 2023, 6: 365-392 [12] Glassey R T.The Cauchy Problem in Kinetic Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1996 [13] Grenier E, Nguyen T T, Rodnianski I. Landau damping for analytic and Gevrey data. Math Res Lett, 2021, 28: 1679-1702 [14] Grenier E, Nguyen T T, Rodnianski I. Plasma echoes near stable Penrose data. SIAM J Math Anal, 2022, 54: [15] Griffin-Pickering M, Iacobelli M.Global well-posedness for the Vlasov-Poisson system with massless electrons in the 3-dimensional torus. Comm Partial Differential Equations, 2021, 46: 1892-1939 [16] Griffin-Pickering M, Iacobelli M. Global strong solutions in $\mathbb{R}^3$ for ionic Vlasov-Poisson systems. Kinet Relat Models, 2021, 14: 571-597 [17] Han-Kwan D, Nguyen T T, Rousset F. Asymptotic stability of equilibria for screened Vlasov-Poisson systems via pointwise dispersive estimates. Ann PDE, 2021, 7: Paper 18 [18] Han-Kwan D, Nguyen T, Rousset F. On the linearized Vlasov-Poisson system on the whole space around stable homogeneous equilibria. Commun Math Phys, 2021, 387: 1405-1440 [19] Horst E. On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I general theory. Math Meth Appl Sci, 1981, 3: 229-248 [20] Horst E. On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II special cases. Math Meth Appl Sci, 1982, 4: 19-32 [21] Horst E. On the asymptotic growth of the solutions of the Vlasov-Poisson system. Mathematical Methods in the Applied Sciences, 1993, 16: 75-86 [22] Huang L, Nguyen Q H, Xu Y.Sharp estimates for screened Vlasov-Poisson system around Penrose-stable equilibria in $\mathbb{R}^d $, $ d\geq3. $ arXiv: 2205.10261 [23] Huang L, Nguyen Q H, Xu Y.Nonlinear Landau damping for the 2d Vlasov-Poisson system with massless electrons around Penrose-stable equilibrium. arXiv: 2206.11744 [24] Hwang H J, Rendall A, Velázquez J L. Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data. Arch Ration Mech Anal,2011, 200: 313-360 [25] Ionescu A D, Jia H.Inviscid damping near the Couette flow in a channel. Commun Math Phys, 2020, 374: 2015-2096 [26] Ionescu A D, Jia H. Nonlinear inviscid damping near monotonic shear flows. Acta Math, 2023, 230: 321-399 [27] Ionescu A, Pausader B, Wang X, Widmayer K. On the asymptotic behavior of solutions to the Vlasov-Poisson system. Int Math Res Not, 2022, 2022: 8865-8889 [28] Ionescu A, Pausader B, Wang X, Widmayer K. Nonlinear Landau damping for the Vlasov-Poisson system in $\mathbb{R}^ 3$: The Poisson equilibrium. Ann PDE, 2024, 10: Paper 2 [29] Lions P L, Perthame B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent Math, 1991, 105: 415-430 [30] Mouhot C, Villani C. On Landau damping. Acta Math, 2011, 207: 29-201 [31] Masmoudi N, Zhao W. Nonlinear inviscid damping for a class of monotone shear flows in finite channel. Ann of Math, 2024, 199: 1093-1175 [32] Pfaffelmoser K. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J Differential Equations, 1992, 95: 281-303 [33] Schaeffer J. Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Comm Partial Differential Equations, 1991, 16: 1313-1335 [34] Smulevici J. Small data solutions of the Vlasov-Poisson system and the vector field method. Ann PDE, 2016, 2: Art 11 [35] Wang X.Decay estimates for the 3D relativistic and non-relativistic Vlasov-Poisson systems. arXiv: 1805.10837 |