|    
[1] Alexandre R, Desvillettes L, Villani C, Wennberg B. Entropy dissipation and long-range interactions. Arch 
Rational Mech Anal, 2000, 152: 327–355 
 
[2] Alexandre R, Safadi M. Littlewood Paley decomposition and regularity issues in Boltzmann equation 
homogeneous equations, I: Non-cutoff case and Maxwellian molecules. Math Models Methods Appl Sci, 
2005, 15(6): 907–920 
 
[3] Alexandre R, Ukai S, Morimoto Y, Xu C -J, Yang T. Uncertainty principle and regularity for Boltzmann 
equation. To appear in Journal of Functional Analysis 
 
[4] Chen H, Li W -X, Xu C -J. The Gevrey Hypoellipticity for linear and non-linear Fokker-Planck equations. 
Journal of Differential Equations, 2009, 246: 320–339 
 
[5] Chen H, Rodino L. General theory of PDE and Gevrey class. General theory of partial differential equations 
and microlocal analysis (Trieste 1995). Pitman Res Notes in Math Ser, 349. Harlow: Longman, 1996: 6–81 
 
[6] Chen Y -M. Desvillettes L, He L -B. Smoothing effects for classic solutions of the full Landau equation. 
To appear in Arch Rational Mech Anal 
 
[7] Derridj M, Zuily C. Sur la r′egularit′e Gevrey des op′erateurs de H¨ormander. J Math Pures et Appl, 1973, 
52: 309–336 
 
[8] Desvillettes L. On asymptotics of the Boltzmann equation when the collisions become grazing. Transp Th 
Stat Phys, 1992, 21(3): 259–276 
 
[9] Desvillettes L, Furioli G, Terraneo E. Propagation of Gevrey regularity for solutions of the Boltzmann 
equation for Maxwellian molecules. Preprint 
 
[10] Desvillettes L, Wennberg B. Smoothness of the solution of the spatially homogeneous Boltzmann equation 
without cutoff. Comm Partial Differential Equations, 2004, 29(1/2): 133–155 
 
[11] Desvillettes L, Villani C. On the Spartially Homogeneous Landau Equation for Hard Potentials, Part I: 
Existence, Uniqueness and Smoothness. Comm Partial Differential Equations, 2000, 25(1/2): 179–259 
 
[12] Durand M. R′egularit′e Gevrey d’une classe d’op′erateurs hypo-elliptiques. J Math Pures et Appl, 1978, 57: 
323–360 
 
[13] Guo Y. The Landau equation in a periodic box. Comm Math Phys, 2002, 231(3): 391–434 
 
[14] Morimoto Y, Xu C -J. Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely 
degenerate elliptic operators. Ast′erisque, 2003, 284: 245–264 
 
[15] Morimoto Y, Ukai S, Xu C -J, Yang T. Regularity of solutions to the spatially homogeneous Boltzmann 
equation without Angular cutoff. Preprint 
 
[16] Rodino L. Linear Partial Differential Operators in Gevrey Class. Singapore: World Scientific, 1993 
 
[17] Ukai S. Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Japan J 
Appl Math, 1984, 1(1): 141–156 
 
[18] Villani C. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. 
Arch Rational Mech Anal, 1998, 143: 273–307 
 
[19] Villani C. On the spatially homogeneous Landau equations for Maxwellian molecules. Math Models 
Methods Appl Sci, 1998, 8(6): 957–983
  |