|    
[1] Allegretto W, Huang Y X. Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces. Funkcial 
Ekvac, 1995, 38(2): 233–242 
 
[2] Ambrosetti A. On Schrodinger-Poisson systems. Milan J Math, 2008, 76(1): 257–274 
 
[3] Ambrosetti A, Ruiz D. Multiple bound states for the Schr¨odinger-Poisson problem. Commun Contemp 
Math, 2008, 10(3): 391–404 
 
[4] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schr¨odinger-Maxwell equations. J Math 
Anal Appl, 2008, 345(1): 90–108 
 
[5] Benci V, Fortunato D. An eigenvalue problem for the Schr¨odinger-Maxwell equations. Topol Methods 
Nonlinear Anal, 1998, 11(2): 283–293 
 
[6] Benmlih K. A note on a 3-dimensional stationary Schr¨odinger-Poisson system. Electron J Differential 
Equations, 2004, 2004(26): 1–5 
 
[7] Chabrowski J, Costa D G. On a class of Schr¨odinger-type equations with indefinite weight functions. 
Comm Partial Differential Equations, 2008, 33(7–9): 1368–1394 
 
[8] Chen J Q, Li S J. Existence and multiplicity of nontrivial solutions for an elliptic equation on RN with indefinite linear part. Manuscripta Math, 2003, 111(2): 221–239 
 
[9] Costa D G, Tehrani H. Existence of positive solutions for a class of indefinite elliptic problems in RN. Calc 
Var Partial Differential Equations, 2001, 13(2): 159–189 
 
[10] D’Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv Nonlinear 
Stud, 2004, 4(3): 307–322 
 
[11] D’Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr¨odinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134(5): 893–906 
 
[12] D’Avenia P. Non-radially symmetric solutions of nonlinear Schr¨odinger equation coupled with Maxwell 
equations. Adv Nonlinear Stud, 2002, 2(2): 177–192 
 
[13] Edelson A L, Stuart C A. The principal branch of solutions of a nonlinear elliptic eigenvalue problem on 
RN. J Differential Equations, 1996, 124(2): 279–301 
 
[14] Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order. Classics in Mathematics. 
Berlin: Springer-Verlag, 2001. Reprint of the 1998 edition. 
 
[15] Lieb E H, Loss M. Analysis. Graduate Studies in Mathematics Vol 14. Providence, RI: American Mathematical 
Society, 1997 
 
[16] Mercuri C. Positive solutions of nonlinear Schr¨odinger-Poisson systems with radial potentials vanishing at 
infinity. Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl, 2008, 19(3): 211–227 
 
[17] Nier F. Schr¨odinger-Poisson systems in dimension d 6 3: the whole-space case. Proc Roy Soc Edinburgh 
Sect A, 1993, 123A(Part 6): 1179–1201 
 
[18] Ruiz D. On the Schr¨odinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases. 
preprint. 
 
[19] Ruiz D. The Schr¨odinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 
237(2): 655–674 
 
[20] S´anchez ´O, Soler J. Long-time dynamics of the Schr¨odinger-Poisson-Slater system. J Statist Phys, 2004, 
114(1/2): 179–204 
 
[21] Stuart C A. An introduction to elliptic equations on RN//Ambrosetti A, Chang K -C, Ekeland I, ed. Nonlinear functional analysis and applications to differential equations. Singapore: World Scientific, 1998: 237–285 
 
[22] Wang Z P, Zhou H S. Positive solution for a nonlinear stationary Schr¨odinger-Poisson system in R3. 
Discrete Contin Dyn Syst, 2007, 18(4): 809–816 
 
[23] Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24. 
Boston, MA: Birkh¨auser Boston Inc, 1996 
 
[24] Yang M B, Shen Z F, Ding Y H. Multiple semiclassical solutions for the nonlinear Maxwell-Schödinger 
system. Nonli Anal, in press. 
 
[25] Zhao L G, Zhao F K. On the existence of solutions for the Schr¨odinger-Poisson equations. J Math Anal 
Appl, 2008, 346(1): 155–169
  |