|    
[1]  Bergh J,  L\"{o}fstr\"{o}m J. Interpolation Spaces. Berlin, Heidelberg, New York:  Springer, 1976 
 
[2]  Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math,  2001,  141: 579--614 
 
[3]  Danchin R. Global existence in critical spaces for flows of compressible viscous and heat-conductive gases.  Arch Pational Mech Anal,  2002, 160:  1--39 
 
[4]  Deckelnick K. Decay estimates for the compressible Navier-Stokes equations in unbounded domains.  
Math Z, 1992, 209: 115--130 
 
[5]  Duan R J, Ukai S, Yang T,  Zhao  H -J. Optimal convergence rates for the compressible Navier-Stokes  
equations with potential forces. Math  Models   Meth Appl  Sci, 2007, 17(5): 737--758 
 
[6]  Hoff D,  Zumbrun K. Multidimensional diffusion waves for the Navier-Stokes equations of compressible 
flow.   Indiana Univ Math J, 1995, 44:  604--676 
 
[7]  Hoff D, Zumbrun K. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves.  Z Angew Math Phys, 1997, 48:  597--614 
 
[8]  Kobayashi T,  Shibata Y. Decay estimates of solutions for the equations of motion of compressible 
viscous and heat-conductive gases in an exterior domain in R3.  Commun Math Phys, 1999, 200:  621--659 
 
[9]  Liu  T -P, Wang  W -K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd 
multi-dimensions.   Commun Math Phys, 1998, 196: 145--173 
 
[10]  Liu X H, Zhu G J. Decay rates and convergence of solutions to system of one-dimensional viscoelastic model with damping. Acta Math  Sci, 2004, 24B(3): 469--484 
 
[11]  Matsumura A,  Nishida T. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad Sec, 1979, 55A: 337--342 
 
[12]  Matsumura A,  Nishida T. The initial value problems for the equations of motion of viscous and 
heat-conductive gases.  J Math Kyoto Univ,  1980, 20: 67--104 
 
[13]  Matsumura A, Nishida T. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids.   Comm Math Phys,  1983, 89(4): 445--464 
 
[14]  Ponce G. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal,  1985, 9: 339--418 
 
[15]  Qian J -Z,  Yin  H. On the stationary solutions of the full compressible Navier-Stokes equations and its stability with respect to initial disturbance.  J  Differ  Equ, 2007, 237: 225--256 
 
[16]  Shibata Y, Tanaka K. On the steady flow of compressible viscous fluid and its stability with respect to initial disturbance. J Math Soc Japan, 2003, 55:  797--826 
 
[17]  Shibata Y, Tanaka K. Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid. Comput  Math  Appl, 2007, 53: 605--623 
 
[18]  Ukai S, Yang T,  Zhao H -J. Convergence rate for the compressible Navier-Stokes equation with external force. J  Hyperbolic Differ  Equ,  2006, 3(3):  561--574 
 
[19]   Wang W -K. Large time behavior of solutions for general Navier-Stokes systems in multi-dimension.  Wuhan Univ J Nat Sci, 1997, 2: 385--393
  |