|    
[1]  Herz C. Bounded mean oscillation and regulated martingales. Trans Amer Math Soc, 1974, 193: 199--215 
 
[2]  Bernard A, Maisonneuve B. Décomposition Atomique de Martingales de la Classe H1, Séminaire de Probabilités XI. Berlin, Heidelberg, New York: Springer, 1977 
 
[3]  Weisz F. Martingale Hardy spaces for 0<p≤1. Probab Th Rel Fields, 1990, 84: 361--376 
 
[4]  Weisz F. Martingale Hardy Spaces and Their Applications in Fourier-analysis. Berlin, Heidelberg, New York: Springer, 1994 
 
[5]  Liu P D, Hou Y L. Atomic decompositions for B-valued martingales. Sci  China Ser A, 1998, 28(10): 884--892 
 
[6]  Liu P D, Yu L. B-valued martingale spaces with small index and atomic decompositions. Sci China Ser A,  2001, 31(7): 615--625 
 
 
[7]  Weisz F.  Martingale operators and Hardy spaces generated by them. Studia Math, 1995, 114: 39--70 
 
[8]  Weisz F. Weak martingale Hardy spaces. Prob Math Stab, 1998, 18: 133--148 
 
[9]  Fefferman R, Soria F. The space weak H1. Studia Math, 1987, 85: 1--16 
 
[10]  Liu P D. Fefferman's inequality and the dual of αHp. Chin Ann  Math, 1991, 12A: 356--364 (in Chinese) 
 
[11]  Yu L, Liu P D. On vector-valued martingale lipschitz spaces pλB(X) and p∧B(X). Acta Math Sinica, 2001, 44(1): 59--68 (in Chinese) 
 
[12]  Liu P D. Martingales and Geometry of Banach Spaces. Wuhan: Wuhan University Press, 1993 
 
[13]  Long R L. Martingale Spaces and Inequalities. Beijing: Peiking University Press, 1993
  |