|    
[1]  Audusse Emmanuel,  Bouchut Fran\c{c}ois,  Bristeau Marie-Odile, Klein Rupert, Perthame Benoît. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J Sci Comput, 2004, 25(6): 2050--2065 
 
[2]  Balsara Dinshaw S, Spicer  Daniel S. A staggered mesh algorithm using high order {G}odunov fluxes to ensure solenodial magnetic fields in magnetohydrodynamic simulations. J Comput Phys, 1999. 149(2): 270--292 
 
[3]  Bouchut Francois. Nonlinear Stability of Finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. 
Frontiers in Mathematics. Basel: Birkh\"auser, 2004 
 
[4]  Bouchut Fran{\c c}ois,  Klingenberg Christian,  Waagan  Knut. A multiwave approximate Riemann solver for ideal MHD based on relaxation I - theoretical framework. Numerische Mathematik, 2007, 108(1): 7--41 
 
[5]  Bouchut Fran{\c c}ois,  Klingenberg Christian,  Waagan  Knut. A multiwave approximate Riemann solver for ideal MHD based on relaxation II - numerical implementation with 3 and 5 waves. To appear in Numerische Mathematik, 2010 
 
[6]  Brackbill J U, Barnes  D C. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations. J Comput  Phys, 1980, 35: 426--430 
 
[7]  Brio M, Wu C C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J Comput Phys, 1988, 75(2): 400--422 
 
[8]  Dedner A, Kemm F, Kroner D,  Munz C -D, Schnitzer T, Wesenberg M. Hyperbolic divergence cleaning for the MHD equations. J Comput Phys, 2002, 175(2): 645--673 
 
[9]  Fryxell B, Olson K, Ricker P, Timmes F X,  Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W, Tufo H. Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series, 2000, 131(1): 273--334 
 
[10]  Fuchs F, McMurry A, Mishra S, Risebro N H, Waagan  K. Approximate Riemann-solver based High-order Finite Volume schemes for the Godunov-Powell form of the ideal MHD equations in multi-dimensions. Submitted 
 
[11]  Fuchs F, McMurry A, Mishra S, Risebro N H, Waagan K. Finite Volume Methods for Wave Propagation in Stratified Magneto-Atmospheres. 
Commun Comput Phys, 2010, 7(3): 473--509 
 
[12]  Harten A, Osher S, Engquist B, Chakravarthy S R. Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl Numer Math, 1986, 2(3-5): 347--378 
 
[13]  Klingenberg Christian, Schmidt Wolfram,  Waagan Knut. Numerical comparison of riemann solvers for astrophysical hydrodynamics. J Comput Phys, 2007, 227(1): 12--35 
 
[14]  Marder Barry. A method for incorporating {G}auss' law into electromagnetic pic codes. J Comput Phys, 1987, 68(1): 48--55 
 
[15]  Powell Kenneth G. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical report, Institute for Computer Applications in Science and Engineering (ICASE), 1994 
 
[16]  Shu Chi-Wang, Osher Stanley. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J Comput Phys, 1989,  83(1): 32--78 
 
[17]  van Leer B. Towards the ultimate conservative difference scheme. V - A second-order sequel to {G}odunov's method. J Comput  Phys, 1979, 32: 101--136 
 
[18]  Waagan K. A positive {MUSCL}-{H}ancock scheme for ideal magnetohydrodynamics. J Comput  Phys, 2009, 228(23): 8609--8626 
 
[19]  Waagan Knut, Federrath Christoph, Klingenberg Christian. A robust code for astrophysical MHD. Preprint, 2010
  |