|   [1]  Song W. Duality for vector optimization of set-valued functions. J Math Anal Appl, 1996, 201: 212--225 
 
[2]  Chen G Y, Rong W D. Characterizations of the Benson proper efficiency for nonconvex vector optimization. J Optim Theory Appl, 1998, 98: 365--384 
 
[3]  Li Z F. Benson proper efficiency in the vector optimization of set-valued maps. J Optim Theory  Appl, 1998, 98:  623--649 
 
[4]  Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions. J Optim Theory Appl, 2001, 110: 413--427 
 
[5]  Liu S, Sheng B. The optimality conditions and duality of nonconvex vector set-valued optimization with Benson 
proper efficiency. Acta Math Appl Sinica, 2003, 26: 337--344 (in Chinese) 
 
[6]  Sach P H. Nearly subconvexlike set-valued maps and vector optimization problems. J Optim Theory Appl, 2003, 119: 335--356 
 
[7]  Zheng X Y. Proper efficiency in locally convex topological vector spaces. J Optim Theory  Appl, 1997, 94: 469--486 
 
[8]  Qiu J H, Mckennon K. Strictly extreme and strictly exposed points. Internat J Math \& Math Sci, 1994, 17: 451--456 
 
[9]  Zheng X Y. Drop theorem in topological vector spaces. Chinese Ann Math, 2000, 21A: 141--148 (in Chinese) 
 
[10]  Qiu J H. Strong Minkowski separation and co-drop property. Acta Math Sinica, 2007, 23B: 2295--2302  
 
[11]  Köthe G. Topological Vector Spaces I. Berlin: Springer-Verlag, 1969 
 
[12]  Kelly J L, Namioka I, et al. Linear Topological Spaces. Princeton: Van Nostrand, 1963 
 
[13]  Guerraggio A,  Molho E, Zaffaroni A. On the notion of proper efficiency in vector optimization. J Optim Theory 
Appl, 1994, 82:1-21  |