|   [1]  Sevastyanov B R. Theory of random branching processes. Uspekhi Mat Nank,  1951, 6: 47--99 
[2]  Sevastyanov B R. Branching Processes. Moscow: Nanka Press, 1971 
[3]  Athreya K B,  Ney P E, Branching Processes. Berlin: Springer-Verlag, 1972 
[4]  Harris T E. The Theory of Branching Processes. Berlin: Springer-Verlag, 1963 
[5]  Kalinkin A V. Markov branching processes with interation. Russian Math Surveys, 2002, 57: 241--304 
[6]  Athreya K B, Kalin S. On branching processes with random environment, I: Extinction probabilities. Ann Math Statist, 1971, 42: 1499--1520 
[7]  Cohn H. A martingale approach to supercritical branching processes. Ann Probab, 1985,  13: 1179--1191 
[8]  Cohn H. On the growth of the multi type supercritical branching processes in a random environment. Ann Probab, 1989, 17: 1118--1123 
[9]  Solomon F. Random walks in a random environment. Ann Probab, 1975, 3: 1--31 
[10]  Kalikow S. Generalized random walks in random environments. Ann Probab, 1981, 9: 753--768 
[11]  Sinai Y G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab Appl, 1982, 27: 256--268 
[12]  Sznaitman A S. Slowdown estimates and central limit theorem for random environment. J  Eur Math Soc, 2000, 2: 93--143 
[13]  Bérard J. The almost sure central limit theorem theorem for one-dimensional nearest-neighbour random walks is space-time random environment. J Appl Prob, 2004, 41: 83--92 
[14]  Rassoul-Agha F, Seppäläinen T. An almost sure invariance principle for random walks in a space-time random environment. Probab Th Rel Fields, 2005, 133(3): 299--314 
[15]  Zeitouni O. Random Walks in Random Environments. Lecture Notes in Mathematics 1837. Berlin: Spinger-Verlag, 2004: 189--312 
[16]  Nawrotzki K. Discrete open system of Markov chains in arandom environment, I, II. J Inform Process, Cybernet, 1981, 17: 569--599;  1982,  18: 83--98 
[17]  Cogburn R. Markov chains in random environments: the case of Markovian environments. Ann Probab, 1980,  8: 908--916 
[18]  Cogburn R. The ergodic of Markov chains in random environments. Z Wahrach Verw, Gebiete, 1984, 66: 109--128 
[19]  Cogburn R. On the central limit theorem for Markov chains in random environments. Ann Probab, 1991, 19: 587--604 
[20]  Orey S. Markov chains with stochastically stationary transition probabilities. Ann Probab, 1991, 19: 907--928 
[21]  Yang G, Hu D. Model of Markov chains in space-time random environments. Wuhan Univ J Natural Sci, 2007, 12(2): 225--229 
[22]  Hu D. The construction of Markov processes in random environments and equivalence theorems. Science in China (Series A), 2004, 47: 481--496 
[23]  Hu D. The exestence and uniqueness of q-processes in random environments. Science in China (Series A), 2004, 47: 641--658 
[24]  Hu D. Infinitely dimensional contral Markov branching chains in random environments. Science in China (Series A), 2005, 48: 27--53 
  
[25]  Hu D, Hu X. On Markov chains in space-time random environments. Acta Math Sci, 2009, 29B(1): 1--10  |