|   [1]  Atkinson F V, Peletier L A. Similarity solutions of the nonlinear diffusion equation. Arch rational Mech Anal, 1974, 54: 373--392 
 
[2]  Courant R, Friedrichs K O. Supersonic Flows and Shock Waves. New York: Wiley-Interscience, 1948 
 
[3]  Duyn  C T, Peletier L A. A class of similarity solution of the nonlinear diffusion equation. Nonlinear Analysis, T M A, 1977, 1: 223--233 
 
[4]  Goodman J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch Rational Mech Anal, 1986, 95(4): 325--344 
 
[5]  Hsiao L, Liu T P. Nonlinear diffsusive phenomenia of nonliear hyperbolic systems. Chin Ann Math, 1993, 14B(4): 465--480 
 
[6]  Huang F M, Matsumura A, Shi X. On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary.  Osaka J Math, 2004, 41(1): 193--210 
 
[7]  Huang F M, Matsumura A, Xin Z P. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch Ration Mech Anal, 2006, 179(1): 55--77 
 
[8]  Huang F M, Xin Zhouping, Yang Tong. Contact discontinuity with general perturbations for gas motions. Adv Math, 2008, 219(4): 1246--1297 
 
[9]  Huang  F M, Yang T. Stability of contact discontinuity for the boltzmann equation. J Differ Equ, 2006, 229(2): 698--742 
 
[10]  Huang  F M, Zhao H J. On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rend Sem Mat Univ Padova, 2003, 109:  283--305 
 
[11]  Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun Math Phys, 1985, 101: 97--127 
 
[12]  Kawashima S, Matsumura  A, Nishihara K. Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas. Proc Japan Acad, Ser A, 1986, 62: 249--252 
 
[13]  Kawashima S, Nikkuni Y. Stability of stationary solutions to the half-space problem for the discrete Boltzmann equation with multiple collision. Kyushu J Math, to appear. \REF{ 
[14]}  Liu T P. Linear and nonlinear large time behavior of general systems of hyperbolic conservation laws. Comm Pure Appl Math, 1977, 30: 767--796 
 
[15]  Liu T P. Shock waves for compressible Navier-Stokes equations are stable. Comm Pure Appl Math, 1986, 39:  565--594 
 
[16]  Liu  T, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1988, 118: 451--465 
 
[17]  Liu T P, Xin Z P. Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J Math, 1997, 1(1):  34--84 
 
[18]  Matsumura A, Mei M. Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Arch Rat Mech Anal, 1999, 146: 1--22 
 
[19]  Matsumura A, Nishihara K. On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas.    Japan J Appl Math, 1985, 2: 17--25 
 
[20] Matsumura A, Nishihara K. Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas.  Japan J Appl Math, 1986, 3:  1--13 
 
[21]  Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas.    Commun Math Phys, 1992, 144:   325--335 
 
[22]  Matsumura A, Nishihara K. Global asymptotics toward the rarefaction wave for solutions of viscous p-system with boundary effect. Q Appl Math, 2000,  LVIII: 69--83 
 
[23]  Pan T,  Liu H X, Nishihara K. Asymptotic behavior of a one-dimensional compressible viscous gas with free boundary. SIAM J Math Anal, 2002, 34(2):  273--291 
 
[24]  Smoller J.Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York: Springer, 1982 
 
[25]  Szepessy A, Xin Z P. Nonlinear stability of viscous shock waves. Arch Rat Mech Anal, 1993, 122: 53--103 
 
[26]  Szepessy A, Zumbrun K. Stability of rarefaction waves in viscous media. Arch Rational Mech Anal, 1996, 133(3):  249--298 
 
[27]  Xin Z P.On nonlinear stability of contact discontinuities//Glilnm J, et al, ed. Proceeding of  5th International Conferences on Hyperbolic Problems: Theory, Numerics and Applications. Singapore World Scientific, 1996: 249--257
  |