|   [1]  Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent  Math, 2000, 141:  579--614 
 
[2]  Deckelnick K. L2-decay for the compressible Navier-Stokes equations in unbounded domains. Comm Partial Diff Eqns, 1993, 18: 1445--1476 
 
[3]  Ducomet B, Feireisl E, Petzeltova   H, Skraba I S.  Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete  Continous Dynamical System, 2004, 11(1): 113--130 
 
[4]  Ducomet B. A remark about global existence for the Navier-Stokes-Poisson system. Applied Mathematics Letters, 1999, 12: 31--37 
 
[5]  Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61(2): 345--361 
 
[6]   Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1):  135--148 
 
[7]  Duan R J, Ukai S, Yang T,  Zhao H J. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci, 2007, 17(5):  737--758 
 
[8]  Duan R J, Liu H, Ukai S,  Yang T. Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force. J Diff Eqns, 2007, 238(1):   220--233 
 
[9]  Guo Y. Smooth irrotational fows in the large to the Euler-Poisson system. Comm Math Phys, 1998, 195:  249--265 
 
[10]  Hoff  D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603--676 
 
[11]  Hao C, Li H L. Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions. J Diff Eqns, 2009, 246: 4791--4812 
 
[12]  Ju Q, Li F, Li H L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ  Equ, 2009, 247: 203--224 
 
[13]  Ju Q, Li H L,  Li  Y. The quasineutral limit of full two fluid Euler-Poisson system. preprint 
 
[14]  Kagei  Y, Kawashima S. Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space. Comm Math Phys, 2006, 266: 401--430 
 
[15]  Kobayashi T, Shibata  Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R3. Comm Math Phys, 1999, 200: 621--659 
 
[16]  Li D L. The Green's function of the Navier-Stokes equations for gas dynamics in R3. Comm Math Phys, 2005, 257: 579--619 
 
[17]  Li H L, Matsumura A, Zhang G. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Arch Ration Mech Anal, 2010, 196:  681--713 
 
[18]  Li H L, Yang T, Zou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Math Sci, 2009, 29B: 1721--1736 
 
[19]  Lin Y Q. Global well-posedness of compressible Navier-Stokes-Poisson system in multi-dimensions. preprint 2009 
 
[20]  Liu  T P,  Wang W K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Comm Math Phys, 1998, 196: 145--173 
 
[21]  Matsumura  A, Nishida T. The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad, Ser A, 1979, 55:   337--342 
 
[22]  Matsumura  A, Nishida T. The initial value problem for the equation of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67--104 
 
[23]  Markowich P A,  Ringhofer C A, Schmeiser C. Semiconductor Equations. Springer, 1990 
 
[24]  Ponce G. Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9: 339--418 
 
[25]  Ukai S, Yang T, Zhao H J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Diff Eqns, 2006, 3: 561--574 
 
[26]  Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2006, 31: 571--591 
 
[27]  Wang W, Wu Z, Yang T. Pointwise estimates of solution for the non-isentropic Navier-Stokes-Poisson equations in multi-dimensions. preprint 2009 
 
[28]  Zeng Y. L1 Asymptotic behavior of compressible isentropic viscous 1-D flow. Comm Pure Appl Math, 1994, 47: 1053--1082 
 
[29]  Zhang G, Li H L,  Zhu C. Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in R3. J Diff Eqns, accepted 2010 
 
[30]  Zhang  Y H,  Tan Z. On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math Meth Appl Sci, 2007, 30: 305--329 
 
[31]  Zou C. Large time behavior of the isentropic bipolar compressible Navier-Stokes-Poisson system. preprint 2009
  |