|    
[1]  Agarwal R K, Halt D W. A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows// Caughey D A, Hafes M M, eds. Frontiers of Computational Fluid Dynamics. John Wiley \& Sons, 1994 
 
[2]  F. Bouchut. On zero-pressure gas dynamics//Advances in Kinetic Theory and Computing. Ser Adv Math Appl Sci 22. River Edge, NJ: World Scientific, 1994: 171--190 
 
[3]  Brenier Y, Grenier E. Sticky particles and scalar conservation laws. SIAM J Numer Anal, 1998, 35:  2317--2328 
 
[4]  Chen G Q, Liu H. Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J Math Anal, 2003, 34:  925--938 
 
[5]  Chen G Q, Liu H. Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids.   Physica D, 2004, 189: 141--165 
 
[6]  Cheng H, Liu H, Yang H. Two-dimensional Riemann problem for zero-pressure gas dynamics with three constant states. J Math Anal Appl, 2008, 343: 127--140 
 
[7]  Courant R, Friedrichs K O. Supersonic Flow and Shock waves. New York: Interscience Publishers Inc, 1948 
 
[8]  E W, Rykov Yu G, Sinai Y G. Generalized varinational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm Math Phys, 1996, 177: 349--380 
 
[9]  J. Guckenheimer. Shocks and rarefactions in two space dimensions. Arch. Ration. Mech. Anal, 1975, 59:  281--291 
 
[10]  Huang  F, Wang Z. Well posedness for pressureless flow. Comm Math Phys, 2001, 222: 117--146 
 
[11]  Li Y, Cao Y. Large partial difference method with second accuracy in gas dynamics. Sci Sinica A, 1985, 28: 1024--1035 
 
[12]  Li J, Li W. Riemann problem for the zero-pressure flow in gas dynamics. Progr Natur Sci, 2001, 5(11):  331--344 
 
[12]  Li J, Yang H. Delta-shock waves as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics. Quart Appl Math, 2001,  59(2):  315--342 
 
[13]  Li J, Zhang T. Generalized Rankine-Hugoniot conditions of weighted Dirac delta waves of transportation equations//Chen G Q, eds.  Nonlinear PDE and Related Areas. Singapore: World Scientific, 1998:  219--232 
 
[14]  Li J, Zhang T, Yang S. The Two-dimensional Riemann Prolem in Gas Dynamics. Pitman Monogr Surv Pure Appl Math 98.  Longman Scientific and Technical, 1998 
 
[15]  Yu.G. Rykov. On the nonhamiltonian character of shocks in 2-D pressureless gas. Bollenttino U M I, 2002, 8(5-B):  55--78 
 
[16]  Shandarin S F, Zeldovich Y B. The large-scale structure of the universe: turbulence, intermittency, structure in a self-gravitating medium. Rev Mod Phys, 1989, 61:  185--220 
 
[17]  Sheng W. Two-dimensional Riemann problem for scalar conservation laws. J Differential Equations, 2002, 183: 239--261 
 
[18]  Sheng W, Zhang T. The Riemann problem for transportation equations in gas dynamics. Mem Amer Math Soc, 1999, 137(654)   
 
[19]  Sun W, Sheng W. Two dimensional non-selfsimilar initial value problem for adhesion partical dynamics. Appl Math Mech (Einglish Edition), 2007, 28(9):  1191--1198 
 
[20]  Sun  W, Sheng W. The non-selfsimilar Riemann problem for 2-D zero-pressure in gas dynamics. Chin Ann Math, 2007, 28B(6):  701--708 
 
[21]  Tan D, Zhang T. Two dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws. (I) Four-J cases.  J Differ  Equ, 1994, 111(1): 203--254 
 
[22]  Tan D, Zhang T,  Zheng Y. Delta-shock wave as limits of vanishing viscosity for hyperbolic system of conservation laws.  J Differ  Equ, 1994, 112(1):  1--32 
 
[23]  Wang Z, Ding X. Uniqueness of generalized solution for the Cauchy problem of transportation equations. Acta Math Sci, 1997, 17(3): 341--352 
 
[24]  Wang Z, Huang F, Ding X. On the Cauchy problem of transportation equations. Acta Math Appl Sinica, 1997, 13(2):  113--122 
 
[25]  Yang H. Riemann problem for a class of coupled hyperbolic system of conservation laws. J Differetial Equations, 1999, 159: 447--484 
 
[27]  Yang H. Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics. J Math Anal Appl, 2001, 260: 18--35 
 
[26]  Yang  H, Sun W. The Riemann problem with delta initial data for a class of coupled hyperbolic system of conservation laws. Nonlinear Analysis, 2007, 67: 3041--3049 
 
[27]  Zhang P, Zhang T. Generalized characteristic analysis and Guckenheimer structure. J Differ  Equ, 1999, 152: 409--430 
 
[28]  Zheng Y. Systems of Conservation Laws: Two-Dimensional Riemann Problems. Progress in Nonlinear Differential Equations and Their 
Applications 38.  Boston: Birkäuser,  2001 
  |