|   [1] Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Berlin, New York: Springer-Verlag, 1975 
[2]  Viana M. Stochastic Dynamics of Deterministic Systems. Lecture Notes XXI Braz Math Colloq, IMPA:  Rio de Janeiro, 1997 
[3]  Gouëzel S. Berry-Esseen theorem and local limit theorem for non uniformly expanding maps. Annales de l'IHP Probabilités et 
Statistiques, 2005, 6: 997--1024 
[4]  Young L S. Statistical properties of dynamical systems with some hyperbolicity. Ann Math, 1998, 2: 585--650 
 
[5]  Xia H. Local central limit theorem and Berry-Essen theorem for some non-uniformly hyperbolic diffeomorphisms. Acta Mathematica Scientia, 2010, 30(3): 701--712 
 
[6]  Dolgopyat D. Limit theorems for partially hyperbolic systems. Trans Amer Math Soc, 2004, 4: 1637--1689 
[7]  Melbourne I, Nicol M. Almost sure invariant principle  for nonuniformly hyperbolic systems. Comm Math Phys, 2005, 1: 131--146 
[8]  Liverani C. Central limit theorem for deterministic systems//Ledrappier F, Lewowicz J, Newhouse S, eds. International Conference on Dynamical Systems  Pitman Research Notes in Math 362. Harlow: Longman Group Ltd, 1996: 56--75 
[9] Hennion H, Herv\'e L.  Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. 
Lecture Notes in Math, New York: Springer,  2001 
[10]  Fan A, Jiang Y. Spectral theory of transfer operators//Jiang Y, Wang Y. Complex Dynamics and Related Topics. New Studies in Advanced Mathematics, Vol 5. International Press, 2004: 63--128 
[11]  Melbourne I, Nicol M. A vector-valued almost sure invariant principle for hyperbolic dynamical systems. Ann Probab, 2009, 2: 478--505 
[12]  Xia H, Zhang Z. Multidimensional central limit theorem with speed of convergence for uniformly expanding maps. Journal of 
Huazhong Normal University, 2008, 3: 323--327 
[13]  Pène F. Rate of convergence in the multidimensional central limit theorem for stationary processes. Application to the Knudsen and to the Sinai billiard. Ann Appl  Probab, 2005, 4: 2331--2392 
[14]  Walters P. An Introduction to Ergodic Theory.  New York: Springer Verlag,  1982 
[15]  Parry W, Pollicott M. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Ast\'erisque, 1990: 187--188 
[16]  Zinsmeister M. Thermodynamic Formalism and Holomorphic Dynamical Systems. SMF/AMS Texts and Monographs, Vol. 2, Providence RI: American Mathematical Society, 2000 
[17]  Dudley M. Real Analysis  and Probability. Wadsworth and Brooks Cole, CA: Pacific Grove, 1989 
[18]  Yurinskii V. A smoothing inequality for estimates of the Levy-Prokhorov distance. Theory Probab Appl, 1975, 1: 1--10  |