|   [1] Cooke R C. Infinite Matrices and Sequence Spaces. London: MacMillan and Co Ltd, 1950 
 
[2] Djolovi′c I, Malkowsky E. A note on compact operators on matrix domains. J Math Anal Appl, 2008, 
340(1): 291–303 
 
[3] Djolovi′c I,Malkowsky E.Matrix transformationsand compact operators on some new m-th orderdi?erence 
sequences. Appl Math Comput, 2008, 198(2): 700–714 
 
[4] Et M. On some topological properties of generalized di?erence sequence spaces. Int J Math & Math Sci, 
2000, 24: 209–220 
 
[5] Gaur A K, Mursaleen M. Di?erence sequence spaces. Int J Math & Math Sci, 1998, 21(11): 701–706 
 
[6] Hardy G H. Divergent Series. London: Oxford University Press, 1973 
 
[7] Jarrah A M, Malkowsky E. Ordinary, absolute and strong summability and marix transformations. Filo- 
mat, 2003, 17: 59–78 
 
[8] Khan V A, Mursleen M. Applications of measures of noncompactness in matrix transformations. Appl 
Math Lett, 2006, 19(7): 599–606 
 
[9] de Malafosse B. The Banach algebra Sα and applications. Acta Sci Math (Szeged), 2004, 70(1/2): 125–145 
 
[10] de Malafosse B, Malkowsky E. Sets of di?erence sequences of order m. Acta Sci Math (Szeged), 2004, 
70(3/4): 659–682 
 
[11] de Malafosse B, Rakoˇcevi′c V. Application of measure of noncompactness in operators on the spaces sα,s0α ,scα ,lpα . J Math Anal Appl, 2006, 323(1): 131–145 
 
 
[12] Malkowsky E, Parashar S D. Matrix transformations in spaces of bounded and convergent di?erence 
sequences of order m. Analysis, 1997, 17: 87–97 
 
[13] Malkowsky E, Rakoˇcevi′c V. The measure of noncompactness of linear operators between spaces of mth- 
order di?erence sequences. Studia Sci Math Hungar, 1996, 33: 381–391 
 
[14] Malkowsky E, Rakoˇcevi′c V. An Introduction into the Theory of Sequence Spaces and Measures of Non- 
compactness. Zbornik Radova, Matematiˇcki Institut Sanu, Belgrade, 2000, 9(17): 143–234 
 
[15] Malkowsky E, Rakoˇcevi′c V. On matrix domains of triangles. Appl Math Comput, 2007, 189(2): 1146–1163 
 
[16] Polat H, Altay B. On some new Euler di?erence sequence spaces. Southeast Asian Bull Math, 2006, 30(2): 
209–220 
 
[17] Polat H, Ba?sar F. Some Euler spaces of di?erence sequences of order m. Acta Math Sci, 2007, 27(2): 
254–266 
 
[18] Rakoˇcevi′c V. Measures of noncompactness and some applications. Filomat, 1998, 12 : 87–120 
 
[19] Stieglitz M, Tietz H. Matrixtransformationen von Folgenr¨aumen, eine Ergebnis¨ubersicht, Math Z, 1977, 
154: 1–16 
 
[20] Wilansky A. Functional Analysis. New York, Toronto, London: Blaisdell Publishing Co, 1964 
 
[21] Wilansky A. Summability Through Functional Analysis. North-Holland Mathematics Studies 85. Ams- 
terdam: North-Holland, 1984  |