|   [1] Shaevitz J W, Block S M, Schnitzer M J. Statistical kinetics of macromolecular dynamics. Biophys J, 2005, 89: 2277 
 
[2] Yasuda R, Noji H, Kinosita K, Yoshida M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 steps. Cell, 1998, 93: 1117–1124 
 
[3] Visscher K, Schnitzer M, Block S. Single kinesin molecules studied with a molecular force clamp. Nature, 1999, 400: 184–189 
 
[4] Schnitzer M J, Block S M. Statistical kinetics of processive enzymes. Cold Spring Harb Symp Quant Biol, 1995, 60: 793 
 
[5] Svoboda K, Mitra P P, Block S M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc Natl Acad Sci, 1994, 91: 11782 
[6] Wang H. A new derivation of the randomness parameter. J Math Phys, 2007, 48: 103301 
 
[7] Prost J, Chauwin J, Peliti L, Ajdari A. Asymmetric pumping of particles. Phys Rev Lett, 1994, 72: 2652–2655 
 
[8] Astumian R. Thermodynamics and kinetics of a brownian motor. Science, 1997, 276: 917–922 
 
[9] Wang H, Oster G. Energy transduction in the F1 motor of ATP synthase. Nature, 1998, 396: 279–282 
 
[10] Wang H. Mathematical theory of molecular motors and a new approach for uncovering motor mechanism. IEE Proceedings Nanobiotechnology, 2003, 150: 127–133 
 
[11] Wang H. Motor potential profile and a robust method for extracting it from time series of motor positions. J Theor Biol, 2006, 242: 908–921 
 
[12] Berg H C. Random Walks in Biology. Princeton, N J: Princeton University Press, 1993 
 
[13] Grabert H. Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer Tracts in Modern Physics, Vol 95. Berlin: Springer-Verlag, 1982 
 
[14] Reif F. Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill, 1985 
 
[15] Kubo R, Toda M, Hashitsume N. Statistical Physics II. Berlin: Springer, 1995 
 
[16] Durrett R. Probability: Theory and Examples. 4th ed. Cambridge University Press, 2000 
 
[17] Einstein A. Investigation on the Theory of the Brownian Motion. New York: Dover, 1956 
 
[18] Risken H. The FokkerPlanck Equation. 2nd ed. Berlin: Springer, 1989 
 
[19] Erdelyi A. Asymptotic Expansions. New York: Dover, 1956 
 
[20] Wang H, Peskin C, Elston T. A Robust numerical algorithm for studying biomolecular transport processes. 
J Theo Biol, 2003, 221: 491–511 
 
[21] Elston T, Doering C. Numerical and analytical studies of nonequilibrium fluctuation induced transport 
processes. J Stat Phys, 1996, 83: 359–383 
 
[22] Richtmyer R D,Morton KW. DifferenceMethods for Initial Value Problems. New York: Wiley-Interscience, 1967  |