|   [1] Agler J, Stankus M. m-isometric transformations of Hilbert space. I. Integral Equations Operator Theory, 1995, 21(4): 383–429 
 
[2] Agler J, Stankus M. m-isometric transformations of Hilbert space. II. Integral Equations Operator Theory, 1995, 23(1): 1–48 
 
[3] Agler J, Stankus M.m-isometric transformations of Hilbert space. III. Integral Equations Operator Theory, 1996, 24(4): 379–421 
 
[4] Bayart F. m-isometries on Banach spaces (to appear in Math Nach) 
[5] Botelho F, Jamison J. Isometric properties of elementary operators. Linear Algebra and its Applications, 2010, 432: 357–365 
 
[6] Kato T. Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1984 
 
[7] Mâu N V. Boundary value problems and controllability of linear system with right invertible operators. Dissertationes Math (Rozprawy Mat), 1992: 316 
 
[8] Mâu N V. Properties of generalized almost inverses. Demonstratio Math, 1992, 3: 493–511 
 
[9] Patel S M. 2-isometry operators. Glasnik Mathemati?cki, 2002, 37(57): 143–147 
 
[10] Przeworska-Rolewicz D. Algebraic analysis. Warszawa - Dordrecht: PWN - Polish Scientific Publishers and D. Reidel Publishing Company, 1988 
 
[11] Przeworska-Rolewicz D. Algebraic theory of right invertible operators. Studia Math, 1973, 48: 129–144  |