|   [1] Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal Appl, 2002, 272(1): 368–379 
 
[2] Agrawal O P. Fractional variational calculus and the transversality conditions. J Phys A, 2006, 39(33): 10375–10384 
 
[3] Agrawal O P. Fractional variational calculus in terms of Riesz fractional derivatives. J Phys A, 2007, 40(24): 6287–6303 
 
[4] Almeida R, Malinowska A B, Torres D F M. A fractional calculus of variations for multiple integrals with application to vibrating string. J Math Phys, 2010, 51(3): 033503, 12 pp. 
 
[5] Almeida R, Torres D F M. H¨olderian variational problems subject to integral constraints. J Math Anal Appl, 2009, 359(2): 674–681 
 
[6] Almeida R, Torres D F M. Isoperimetric problems on time scales with nabla derivatives. J Vib Control, 2009, 15(6): 951–958 
[7] Almeida R, Torres D F M. Calculus of variations with fractional derivatives and fractional integrals. Appl Math Lett, 2009, 22(12): 1816–1820 
 
[8] Almeida R, Torres D F M. Leitmann’s direct method for fractional optimization problems. Appl Math Comput, 2010, 217(3): 956–962 
 
[9] Atanackovi´c T M, Konjik S, Pilipovi´c S. Variational problems with fractional derivatives: Euler-Lagrange equations. J Phys A, 2008, 41(9): 095201, 12 pp. 
 
[10] Baleanu D. New applications of fractional variational principles. Rep Math Phys, 2008, 61(2): 199–206 
 
[11] Baleanu D. Fractional variational principles in action. Phys Scr, 2009, T136: 014006 
 
[12] Baleanu D, Maaraba T, Jarad F. Fractional variational principles with delay. J Phys A, 2008, 41(31): 315403, 8 pp. 
 
[13] Baleanu D, Muslih S I, Rabei E M. On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dynam, 2008, 53(1/2): 67–74 
 
[14] Baleanu D, Trujillo J J. On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dynam, 2008, 52(4): 331–335 
 
[15] Baleanu D, Trujillo J I. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun Nonlinear Sci Numer Simul, 2010, 15(5): 1111–1115 
 
[16] Bastos N R O, Ferreira R A C, Torres D F M. Discrete-time fractional variational problems. Signal Process, 2011, 91(3): 513–524 
 
[17] Bl°asj¨o V. The isoperimetric problem. Amer Math Monthly, 2005, 112(6): 526–566 
 
[18] Curtis J P. Complementary extremum principles for isoperimetric optimization problems. Optim Eng, 2004, 5(4): 417–430 
 
[19] El-Nabulsi R A, Torres D F M. Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order ( , ). Math Methods Appl Sci, 2007, 30(15): 1931–1939 
 
[20] El-Nabulsi R A, Torres D F M. Fractional actionlike variational problems. J Math Phys, 2008, 49(5): 053521, 7 pp. 
 
[21] Frederico G S F, Torres D F M. A formulation of Noether’s theorem for fractional problems of the calculus of variations. J Math Anal Appl, 2007, 334(2): 834–846 
 
[22] Frederico G S F, Torres D F M. Fractional conservation laws in optimal control theory. Nonlinear Dynam, 2008, 53(3): 215–222 
 
[23] Frederico G S F, Torres D F M. Fractional Noether’s theorem in the Riesz-Caputo sense. Appl Math Comput, 2010, 217(3): 1023–1033 
 
[24] Herzallah M A E, Baleanu D. Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dynam, 2009, 58(1/2): 385–391 
 
[25] Jarad F, Maaraba T, Baleanu D. Fractional variational principles with delay within caputo derivatives. Rep Math Phys, 2010, 65(1): 17–28 
 
[26] Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl Math Lett, 2009, 22(3): 378–385 
 
[27] Malinowska A B, Torres D F M. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput Math Appl, 2010, 59(9): 3110–3116 
 
[28] Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations. New York: Wiley, 1993 
 
[29] Podlubny I. Fractional differential equations. San Diego, CA: Academic Press, 1999 
 
[30] Ross B, Samko S G, Love E R. Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal Exchange, 1994/1995, 20(1): 140–157 
 
[31] Samko S G, Kilbas A A, Marichev O I. Fractional integrals and derivatives Translated from the 1987 Russian original. Yverdon: Gordon and Breach, 1993 
[32] Tarasov V E, Zaslavsky G M. Nonholonomic constraints with fractional derivatives. J Phys A, 2006, 39(31): 9797–9815 
 
[33] van Brunt B. The calculus of variations. New York: Springer, 2004  |