|   [1] Barlow M T, Bass R F. Transition densities for Brownian motion on the Sierpisnki carpet. Probab Th Rel Fields, 1992, 91: 307–330 
 
[2] Grigor' yan A, Hu J, Lau K-S. Comparison inequalities for heat semigroups and heat kernels on metric measure spaces. J Funct Anal, 2010, 259: 2613–2641 
 
[3] Grigor' yan A, Saloff-Coste L. Heat kernel on manifolds with ends. Ann Inst Fourier (Grenoble), 2009, 59(5): 1917–1997 
 
[4] Hambly B M, Kumagai T. Transition density estimates for diffusion processes on post critically finite self-similar fractals. Proc London Math Soc, 1999, 79(3): 431–458 
 
[5] Luan J, Zhu F. The heat kernel on the Cagley Heisenberg group. Acta Mathematica Scientia, 2005, 25B(4): 687–702 
 
[6] Grigor’yan A, Hu J, Lau K-S. Heat kernels on metric spaces with doubling measure//Proceedings of Conference on Fractal Geometry in Greifswald IV. Birkhäuser, 2009: 3–44 
 
[7] Grigor' yan A, Hu J. Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent Math, 2008, 174: 81–126 
 
[8] Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes. Berlin: De Gruyter, 1994 
 
[9] Yosida K. Functional Analysis. Berlin: Springer, 1974 
 
[10] Grigor' yan A, Hu J. Upper bounds of heat kernels on doubling spaces. preprint 2008 
 
[11] Grigor' yan A, Saloff-Coste L. Hitting probabilities for Brownian motion on Riemannian manifolds. J Math Pures Appl, 2002, 81: 115–142  |