|   [1] Keller E F, Segel L A. Initiation of slime mould aggregation viewed as an instability. J Theoret Biol, 1970, 26: 399–415 
 
[2] Hale J K. Asymptotic Behaviour of Dissipative Systems. Providence, RI: Amer Math Soc, 1988 
 
[3] Babin A V, Vishik M I. Attractors of partial differential evolution equations in an unbounded domain. Proc R Soc Edinb. 1990, 116A: 221–243 
 
[4] Ladyzhenskaya O. Attractors for Semigroups and Evolutions. Cambridge: Cambridge University Press, 1991 
 
[5] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983 
 
[6] MarionM. Finite-dimensional attractors associated with partly dissipative reaction-diffusion system. SIAM J Math Anal, 1989, 20: 816–844 
 
[7] Anibal R B, Wang B X. Attractors for partly dissipative reaction diffusion system in Rn. J Math Anal Appl, 2000, 252: 790–803 
 
[8] Friedman A. Partial Differential Equations. New York: Holt Rinehart and Winston, 1969 
 
[9] Mora X. Semilinear parabolic problems define semiflows on Ck spaces. Trans Amer Math Soc, 1983, 278: 21–55 
 
[10] Osaki K, Tsujikawa T, Yagi A. Exponential attractor for a chemotaxis-growth system of equatons. Non-linear Anal, 2002, 51: 119–144 
 
[11] Wang B X. Attractors for reaction diffusion equations in unbounded domain. Phys D, 1999, 128: 41–52 
 
[12] Horstmann D, Winkler M. Boundedness vs blow-up in a chemotaxis system. J Diff Eqns, 2005, 215: 52–107 
 
[13] Naigai T, Syukuinn R, Umesako M. Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in Rn. Funkcialaj Ekvacioj, 2003, 46: 383–407 
 
[14] Ladyzhenskaja O A, Solonnikov V A, Uraltseva N N. Linear and Quasi-linear Equations of Parabolic Type. Providence, RI: Amer Math Soc, 1968 
 
[15] Li Junfeng, Liu Weian. Existence of solution to some Othmer-Stevens chemotaxis system with reaction term. Acta Mathematica Scientia, 2009, 29A(6): 1561–1571 
 
[16] Zhong Xinhua, Jiang Song. Globally bounded in-time solutions to a parabolic-elliptic system modelling chemotaxis. Acta Mathematica Scientia, 2007, 27B(2): 421–429  |