|   [1] Wolfmann J. Negacyclic and cyclic codes over Z4. IEEE Trans Inform Theory, 1999, 45(7): 2527–2532 
 
[2] Wolfmann J. Binary images of cyclic codes over Z4. IEEE Trans Inform Theory, 2001, 47(5): 1773–1779 
 
[3] Abualrub T, Oehmke. On the generators of Z4 cyclic codes of length 2e. IEEE Trans Inform Theory, 2003, 49: 2126–2133 
 
[4] Blackford T. Negacyclic codes over Z4 of even length. IEEE Trans Inform Theory, 2003, 49(6): 1417–1424 
 
[5] Blackford T. Cyclic code over Z4 of oddly even length. Discrete Appl Math, 2003, 138: 27–46 
 
[6] Dinh H Q, Lopez-Permouth S R. Cyclic and negacyclic codes over finite chain rings. IEEE Trans Inform Theory, 2004, 50(8): 1728–1744 
 
[7] Dinh H Q. Negacyclic codes of length 2s over Galois rings. IEEE Trans Inform Theory, 2005, 51(12): 4252–4262 
 
[8] Dinh H Q. Constacyclic codes of length 2s over Galois exlension rings of F2 + uF2. IEEE Trans Inform Theory, 2009, 55(4): 1730–1740 
 
[9] Dinh H Q. On the linear ordering of some classes of negacyclic and cyclic codes and their distance distri-butions. Finite Field Appl, 2008, 14: 22–40 
 
[10] Dinh H Q. Constacyclic codes of length ps over Fpm + uFpm. Journal of Algebra, 2010, 324: 940–950 
 
[11] Dinh H Q. On some classes of constacyclic codes over polynomial residue rings. Adances in Math Commu-nications, 2012, 6(2): 175–191 
 
[12] Dinh H. Q. Repeated-root constacyclic codes of length 2ps. Finite Fields Appl, 2012, 18: 133–134 
 
[13] Dougherty S T, Ling S. Cyclic codes over Z4 of even length. Des Codes Cryptogr., 2006, 39: 127–153 
 
[14] Dougherty S T, Kim J L, Lin H. Constructions of self-dual codes over commutative chain rings. Int J Inform Coding Theory, 2010, 1: 171–190 
 
[15] Amarra M C V, Nemenzo F R. On (1 − u)-cyclic codes over Fpk + uFpk . Applied Math Letters, 2008, 21: 1129–1133 
 
[16] Ling S, Niederreiter H, Sol´e P. On the algebraic structure of quasi-cyclic codes. IV. Repeated root. Des Codes Cryplogr, 2006, 38(2): 337–361 
 
[17] Hammous A R, Kumar P V Jr, Calderbark A R, Sloame J A, Sol´e P. The Z4−linearity of Kordock, Preparata, Goethals, and releted codes. IEEE Trans Inform Theory, 1994, 40: 301–319 
 
[18] Norton G H, S?al?agean A. On the strusture of linear and cyclic codes over a finite chain ring. Appl Algebra Engyg Comm Comput, 2000, 10:  489–506 
 
[19] Qian J F, Zhang L N, Zhu S. (1 − u)-constacyclic and cyclic codes over F2 + uF2. Applied Math Letters, 2006, 19:820–823 
 
[20] Zhu S, Kai X. Dual and self-dual negacyclic codes of even length over Z2a . Discrete Math, 2009, 309: 2382–2391 
 
[21] McDonald B R. Finite Ring with Indentily. New York: Dekker, 1974 
 
[22] Huffman W C, Pless V. Fundamentals of Error-Correcting Codes. Cambridge: Cambridge University Press, 2003 
 
[23] Liu X. MDR codes and self-dual codes on cartesian product codes. Journal on Communications, 2010, 31(3): 123–125 (in Chinese)  |