|   [1] Abdmouleh F, Jeribi A. Gustafson, Weidman, Kato, Wolf, Schechter, Browder, Rakocevic and Schmoeger essential spectra of the sum of two bounded operators and application to a transport operator. Math Nachr, 2011, 284: 166–176 
 
[2] Abdmouleh F, Ammar A, Jeribi A. Stability of the S-essential spectra on a Banach space. Math Slovaca, 2013, 63: 299–320 
 
[3] Aiena P. Semi-Fredholm operators, perturbation theory and localized SVEP. Caracas, Venezuela, 2007 
 
[4] Caradus S R. Operators of Riesz type. Pacific J Math, 1966, 18: 61–71 
 
[5] Caradus S R. Generalized inverse and operator theory//Queen’s Papers in Pure And Appl Math, 50. Queen´s University, Kingston, Ont, 1978 
 
[6] Gohberg I C, Markus A S, Feldman I A. Normally solvable operators and ideals associated with them. Amer Soc Trans Ser 2, 1967, 61: 63–84 
 
[7] Gustafson K, Weidmann J. On the essential spectrum. J Math Anal Appl, 1969, 25: 121–127 
[8] Jeribi A. A characterization of the essential spectrum and applications. Boll dell Unio Mate Ital, Serie 8, 2002, 5: 805–825 
 
[9] Jeribi A. A characterization of the Schechter essential spectrum on Banach spaces and applications. J Math Anal Appl, 2002, 271: 343–358 
 
[10] Jeribi A, Moalla N. A characterization of some subsets of Schechter´s essential spectrum and application to singular transport equation. J Math Anal Appl, 2002, 358: 434–444 
 
[11] Jeribi A, Moalla N, Yengui S. S-essential spectra and application to an example of transport operators. Math Methods Appl Sci, 2013, DOI: 10.1002/mma.1564 
 
[12] Kaashoek M A, Lay D C. Ascent, descent, and commuting perturbations. Trans Amer Math Soc, 1972, 169: 35–47 
 
[13] Kato T. Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1966 
 
[14] Lay D. Characterizations of the essential spectrum of F. E. Browder. Trans Amer Math Soc, 1968, 74: 246–248 
 
[15] Lebow A, Schechter M. Semigroups of linear operators and measures of non-compactness. J Funct Anal, 1971, 7: 1–26 
 
[16] Markus A S. Introduction to the Spectral Theory of Polynomial Operator Pencils. Providence, RI: Amer Math Soc, 1988 
 
[17] Mokhtar-Kharroubi M. Time asymptotic behaviour and compactness in neutron transport theory. Euro J Mech, B Fluids, 1992, 11: 39–68 
 
[18] M¨uller V. Spectral Theory of Linear Operator and Spectral Systems in Banach Algebras. Verlag: Birkh¨auser, 2003 
 
[19] Nussbaum R D. Spectral mapping theorems and perturbation theorems for Browder´s essential spectrum. Trans Amer Math Soc, 1970, 150: 445–455 
 
[20] Schechter M. Principles of Functional Analysis. Grad Stud Math 36. Providence, RI: Amer Math Soc, 2002 
 
[21] Shkalikov A A, Tretter C. Spectral analysis for linear pencils N − P of ordinary differential operators. Math Nachr, 1996, 179:275–305 
 
[22] Taylor A E. Theorems on ascent, descent, nullity and defect of linear operators. Math Ann, 1966, 163: 18–49 
 
[23] Wolf F. On the essential spectrum of partial differential boundary problems. Comm Pure Appl Math, 1959, 12: 211–228 
 
[24] Wolf F. On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators. Indag Math, 1959, 21: 142–147 
 
[25] Yood B. Properties of linear transformations preserved under addition of a completely continuous transformation. 
Duke Math J, 1951, 18: 599–612 
 
[26] ˇ Zivkovi´c-Zlatanovi´c S ˇC, Djordjevi´c D S, Harte R E. On left and right Browder operators. J Korean Math Soc, 2011, 48: 1053–1063 
 
[27] ˇ Zivkovi´c-Zlatanovi´c S ˇC, Djordjevi´c D S, Harte R E. Left-right Browder and left-right Fredholm operators. Integral Equations Operator Theory, 2011, 69: 347–363  |