[1] |
Yonghong YAO, Abubakar ADAMU, Yekini SHEHU.
STRONGLY CONVERGENT INERTIAL FORWARD-BACKWARD-FORWARD ALGORITHM WITHOUT ON-LINE RULE FOR VARIATIONAL INEQUALITIES
[J]. Acta mathematica scientia,Series B, 2024, 44(2): 551-566.
|
[2] |
Wei QU, Tao QIAN, Ieng Tak LEONG, Pengtao LI.
THE SPARSE REPRESENTATION RELATED WITH FRACTIONAL HEAT EQUATIONS
[J]. Acta mathematica scientia,Series B, 2024, 44(2): 567-582.
|
[3] |
Ruinan LI, Xinyu WANG.
TRANSPORTATION COST-INFORMATION INEQUALITY FOR A STOCHASTIC HEAT EQUATION DRIVEN BY FRACTIONAL-COLORED NOISE*
[J]. Acta mathematica scientia,Series B, 2023, 43(6): 2519-2532.
|
[4] |
Junsong LI, Chao MI, Chuanzhi XING, Dehao ZHAO.
GENERAL COUPLED MEAN-FIELD REFLECTED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS*
[J]. Acta mathematica scientia,Series B, 2023, 43(5): 2234-2262.
|
[5] |
Tianjie YANG, Guangwei YUAN.
POSITIVE CLASSICAL SOLUTIONS OF DIRICHLET PROBLEM FOR THE STEADY RELATIVISTIC HEAT EQUATION*
[J]. Acta mathematica scientia,Series B, 2023, 43(5): 2279-2290.
|
[6] |
Kunrada Kankam, Prasit Cholamjiak.
DOUBLE INERTIAL PROXIMAL GRADIENT ALGORITHMS FOR CONVEX OPTIMIZATION PROBLEMS AND APPLICATIONS*
[J]. Acta mathematica scientia,Series B, 2023, 43(3): 1462-1476.
|
[7] |
Jingyu, Li, Yong, Zhang.
THE LAW OF THE ITERATED LOGARITHM FOR SPATIAL AVERAGES OF THE STOCHASTIC HEAT EQUATION*
[J]. Acta mathematica scientia,Series B, 2023, 43(2): 907-918.
|
[8] |
Xiuwei YIN.
AN INTEGRATION BY PARTS FORMULA FOR STOCHASTIC HEAT EQUATIONS WITH FRACTIONAL NOISE*
[J]. Acta mathematica scientia,Series B, 2023, 43(1): 349-362.
|
[9] |
Jiayong WU.
TIME ANALYTICITY FOR THE HEAT EQUATION ON GRADIENT SHRINKING RICCI SOLITONS
[J]. Acta mathematica scientia,Series B, 2022, 42(4): 1690-1700.
|
[10] |
Jun WANG, Zhenlong CHEN.
HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELDS
[J]. Acta mathematica scientia,Series B, 2022, 42(2): 653-670.
|
[11] |
Chengjie YU, Feifei ZHAO.
A NOTE ON LI-YAU-TYPE GRADIENT ESTIMATE
[J]. Acta mathematica scientia,Series B, 2019, 39(4): 1185-1194.
|
[12] |
Heyu LI, Xia CHEN.
PRECISE MOMENT ASYMPTOTICS FOR THE STOCHASTIC HEAT EQUATION OF A TIME-DERIVATIVE GAUSSIAN NOISE
[J]. Acta mathematica scientia,Series B, 2019, 39(3): 629-644.
|
[13] |
Le CHEN, Kunwoo KIM.
NONLINEAR STOCHASTIC HEAT EQUATION DRIVEN BY SPATIALLY COLORED NOISE: MOMENTS AND INTERMITTENCY
[J]. Acta mathematica scientia,Series B, 2019, 39(3): 645-668.
|
[14] |
Yaozhong HU, Khoa LÊ.
JOINT HÖLDER CONTINUITY OF PARABOLIC ANDERSON MODEL
[J]. Acta mathematica scientia,Series B, 2019, 39(3): 764-780.
|
[15] |
Yaozhong HU, Yanghui LIU, Samy TINDEL.
ON THE NECESSARY AND SUFFICIENT CONDITIONS TO SOLVE A HEAT EQUATION WITH GENERAL ADDITIVE GAUSSIAN NOISE
[J]. Acta mathematica scientia,Series B, 2019, 39(3): 669-690.
|