|   [1]  Arioli G,  Szulkin A.  A semilinear Schr\"{o}dinger equation in the presence of a magnetic field. Arch Rat Mech Anal, 2003, 170: 277--295 
[2]  Brown K J. The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc Var Partial Differ Equ, 2005, 22: 483--494 
[3]  Binding P A, Drabek P, Huang Y X. On Neumann boundary value problems for some quasilinear elliptic equations. Elec J Differ Equ, 1997, 5:  1--11 
[4]  Brown K J, Zhang Y. The Nehari manifold for a semilinear elliptic problem with a sign changing weight function. 
J Differ Equ, 2003, 193: 481--499 
[5]  Cingolani  S.  Semilinear stationary states of Nonlinear Schrödinger equations with an external magnetic field. 
J Differ Equ, 2003, 188:  52--79 
[6]  Chabrowski J,  Costa D G. On a class of Schrödinger-type equations with indefinite weight functions. Comm Partial Differ Equ, 2008, 33(8): 1368--1393 
[7]  Chabrowski  J,  Andrzej Szulkin. On the Schrödinger equation involving a critical Sobolev exponent and 
magnetic field. Topol Mech Nonl Anal, 2005, 4:  59--78 
[8]  Costa   D G, Tehrani H.  Existence of positive solutions for a class of indefinite elliptic problems. Calc Var Partial Differ Equ, 2001, 13(2):  159--189 
[9]  Drabek P, Pohozaev S I. Positive solutions for the P-Laplacian: application of the fibering method. Proc Royal Soc Edinburgh, 1997, 127: 703--726 
[10]  Dai  Shuang,  Yang Jianfu. Existence of nonnegative solutions for a class of p-Laplacian equations in 
RN. Adv Nonlinear Studies, 2007, 7(1): 107--130 
[11]  Kurata  Kazuhiro. Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields.  Nonlinear Analysis,  2000, 41: 763--778 
[12]  Lieb E H, Loss M.  Analysis. Graduate Studies in Mathematics 14. AMS, 1997 
[13]  Lions P L. The concentration-compactness principle in the calculus of variations:  The limit case, Part I. Revista Math Iberoamericano, 1985, 1(1): 145--201 
[14]  Lions P L. The concentration-compactness principle in the calculus of variations:  The limit case, Part II. Revista Math Iberoamericano, 1985, 1(2): 45--121 
[15]  Nehari Z. On a class of nonlinear second-order differential equations.  Trans Amer Math Soc, 1960, 95: 101--123 
[16]  Willem M.  Minimax Theorems.  Boston, Basel, Berlin: Birkhauser, 1996 
   |