|    
[1]  Bergh J, L\"ofstrom J. Inerpolation Spaces, an Introduction.  New York: Springer-Verlag, 1976 
 
[2]  Caflish R E, Klapper I, Steel G. Remarks on  singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Comm  Math Phys, 1997, 184: 443--455 
 
[3]  Cannone M, Miao C X, Prioux N, Yuan B Q. The Cauchy problem for the Magneto-hydrodynamic system. Banach Center Publications, 2006, 74: 59--93 
 
[4]  Chemin J Y. Perfect Incompressible Fluids. Oxford: Clarendon press, 1998 
 
[5]  Chen Q L, Miao C X, Zhang Z F. The Beale-Kato-Majda criterioa for the 3D magneto-hydrodynamics equations. Comm Math Phys, 2007, 275: 861--872 
 
[6]  Duvant G, Lions J L. Inequations en thermoelasticite et magnetohydrodynamique. Arch Ration Mech Anal, 1972, 46: 241--279 
 
[7]  Eringen A C. Theory of micropolar fluids. J Math Mech, 1996, 16: 1--18 
 
[8]  Ferreira L C F, Villamizar-Roa E J. On the existence and stability of solutions for the micropolar fluids in exterior domains. Math Meth Appl Sci, 2007, 30: 1185--1208 
 
[9]  Gao S Q, Duan H Y. Negative norm least-squares methods for the incompressible magnetohydrodynamic equations. Acta Math Sci, 2008,  28B: 675--684 
 
[10]  Galdi G P, Rionero S. A note on the existence and uniqueness of solutions of the micropolar fluid equations. Internat J Engrg Sci, 1997, 15: 105--108 
 
[11]  He C, Wang Y. On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2007, 238: 1--17 
 
[12]  He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235--254 
 
[13]  Jiu Q S, Niu D J. Mathematical results related to a two-dimensional magnetohydrodynamic equations. Acta Math Sci, 2006, 26B: 744--756 
 
[14]  Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flows. New York: Gordon and Breach, 1969 
 
[15]  Lemari\'{e}-Rieusset P G. Recent Developments in the Navier-Stokes Problem. London: Chapman & Hall/CRC, 2002 
 
[16]  Lions P L. Mathematical Topics in Fluid Mechanics. New York: Oxford University Press Inc, 1996 
 
[17]  Miao C X.  Harmonic Analysis and Application to Partial Differential Equations (2nd ed). Beijing: Science Press, 2004 
 
[18]  Ortega-Torres E E, Rojas-Medar M A. Magneto-Micropolar fluid motion: Global existence of strong solutions. Abstr Appl Anal, 1999, 4: 109--125 
 
[19]  Rojas-Medar M A. Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math Nachr, 1997, 188: 301--319 
 
[20]  Rojas-Medar M A, Boldrini J L. Magneto-micropolar fluid motion: existence of weak solutions.  Rev Mat Complut, 1998, 11: 443--460 
 
[21] Sermange M, Temam R. Some mathematical questions related to the MHD equations.  Comm Pure Appl Math, 1983, 36: 635--664 
 
[22] Triebel H. Theory of Function Spaces, Monograph in Mathematics,  Vol 78. Basel: Birkhäuser Verlag, 1983 
 
[23]  Villamizar-Roa E J, Rodrìguez-Bellido M A. Global existence and exponential stability for the micropolar fluid system. Z Angew Math Phys, 2008, 59: 790--809 
 
[24]  Yamaguchi N. Existence of global strong solution to the micropolar fluid system in a bounded domain. Math Meth Appl Sci, 2005, 28: 1507--1526 
 
[25]  Li F P, Yuan B Q. On some explicit blow-up solutions to 3D incompressible magnethohydrodynamic equations. Acta Math Sci, 2009, 29A(6): 1651--1656 
 
[26]  Zhou Y. Remarks on regularities for the 3D MHD equations. Discrete Contin Dyn Syst, 2005, 12: 881--886 
 
[27]  Zhou Y. Regularity criteria for the 3D MHD equations in terms of the pressure.  Internat J Non-Linear Mech, 2006, 41: 1174--1180 
 
[28]  Zhou Y. Regularity criteria for the generalized viscous MHD equations. Ann Inst H Poincarè Anal Non Linèaire, 2007, 24: 491--505
  |