|    
[1]  Caffarelli L, Vasseur, A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann Math, 2010, 171(3): 1903--1930 
 
[2]  Cazenave T. Semilinear Schr\"{o}dinger Equation. Courant Lecture Notes in Math, 10. Courant Ins Math Sci and Amer Math Soc, 2003 
 
[3]  Constantin P, Wu J H. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 30(5):  937--948 (electronic) 
 
[4]  Cordoba D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann Math, 1998, 148: 1135--1152 
 
[5]  Cordoba A, Cordoba D. A maximum principle applied to quasi-geostrophic equation. Comm Math Phys, 2004, 249: 511--528 
 
[6]  Deng S J, Wang W K. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. to appear in Discrete and Continuous Dynamical Systems (A) 
 
[7]  Deng S J, Wang W K, Yu S H. Pointwise convergence to Knudsen layers of the Boltzmann equation. Comm Math Phys, 2008, 281: 287--347 
 
[8]  Evans L C. Partial Differential Equations. Graduate Studies in Math, Vol 19. Amer Math Soc, 1998 
 
[9]  Gao W L, Zhu C J. Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions. Math Models Methods Appl Sci, 2008, 18:  511--541 
 
[10]  Hammer K. Nonlinear effects on the propagation of sound waves in a radiating gas. Quart J Mech Appl Math, 1971, 24: 155--168 
 
[11]  H\"{o}rmander L. Lecture on Nonlinear Hyperbolic Differential Equations. Mathematiques \& Application 26. Springer-Verlag, 1997 
 
[12]  Kawashima S. System of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics  
[D]. Kyoto: Kyoto University, 1983 
 
[13]  Kiselev A, Nazarov F, Volberg A. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent Math, 2007, 167(3): 445--453 
 
[14]  Kreiss H O, Lorens J. Initial-boundary value problems and the Navier-Stokes equations. Appl Math 47. SIAM, 2004 
 
[15]  Li T T, Chen Y M. Nonlinear Evolution Equations. Beijing: Science Press, 1989 (in Chinese) 
 
[16]  Liu, T P. Pointwise convergence to shock waves for viscous conservation laws. Comm Pure Appl Math, 1997, 50(11):  1113--1182 
 
[17]  Liu T P, Wang W K. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions. Comm Math Phy,  
1998, 196:  145--173 
 
[18]  Liu T P, Yu S H. Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Comm Pure Appl Math, 2007, 60: 295--356 
 
[19]  Liu T P, Zeng Y. Large time behavior of solutions general quasilinear hyperbolic-parabolic systems of conservation laws. Amer Math Soc Memoirs, 1997, 125(599) 
 
[20]  Markowich P A, Ringhofer C, Schmeiser C. Semiconductors Equations. Vienna, New York: Springer, 1990 
 
[21]  Metivier G. Small Viscosity and Boundary Layer Methods. Birkhauser, 2003 
 
[22]  Shizuta Y, Kawashima S. Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation.  Hokkaido Math J, 1985, 14(2):  249--275 
 
[23]  Ukai S, Yang T. Mathematical Theory of Boltzmann Equation. Lecture Notes in City University of Hong Kong, 2006 
 
[24]  Vincenti W G, Kruger C H. Introduction to Physical Gas Dynamics. New York: Wiley & Sons,  1965 
 
[25]  Wang W K. The pointwise estimates of solutions for general Navier-Stokes systems in odd multi-dimensions. Methods Appl Anal, 2005, 12(3):  279--290 
 
[26]  Wang W K. The pointwise estimate of solutions for Navier-Stokes equations in multi-dimensions//Hyperbolic Problems Theory, Numerics and Applications (Tenth international conference in Osaka).  Yokohama Publishers, 2006:  205--212 
 
[27]  Wang W K, Wang W J. The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions. Nonlinear Anal, 2009, 71:  1180--1195 
 
[28]  Wang W K, Wang W J. Global existence of solutions for a model system of the radiating gas with large initial data. Preprint 
 
[29]  Wang W K, Wu Z G. Pointwise estimate of solutions for the Navier-Stokes-Poisson equation in multi-dimensions. J Differ Equ, 2010, 248:  1617--1636 
 
[30]  Wang W K, Xu H M. Pointwise estimate of solutions of isentropic Navier-Stokes equations in even multi-dimensions. Acta Math Sci, 2001, 21B(3): 417--427 
 
[31]   Wang W K, Yang T. The pointwise estimates of solutions for Euler equations with daping in multi-dimensions. J Differ Equ, 2001, 173: 410--450 
 
[32]  Wang W K, Yang, T. Existence and stability of planar diffusion waves for 2-D Euler equations with damping. J Differ Equ, 2007, 242(1): 40--71 
 
[33]  Wang W K, Yang X F. The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions. J Hyperbolic Differ Equ, 2005, 2(3): 673--695 
 
[34]  Wu Z G, Wang W K. Pointwise estimate of solutions for the Euler-Poisson equation with damping in multi-dimensions. Discrete and Continuous Dynamical Systems (A), 2010, 26: 1101--1117
  |