Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (3): 843-856.doi: 10.1016/S0252-9602(18)30788-4
• Articles • Previous Articles Next Articles
Yong LIN, Yiting WU
Received:
2017-04-14
Revised:
2017-07-30
Online:
2018-06-25
Published:
2018-06-25
Contact:
Yiting WU
E-mail:yitingly@126.com
Supported by:
The first author is supported by the National Science Foundation of China (11671401); the second author is supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (17XNH106).
Yong LIN, Yiting WU. BLOW-UP PROBLEMS FOR NONLINEAR PARABOLIC EQUATIONS ON LOCALLY FINITE GRAPHS[J].Acta mathematica scientia,Series B, 2018, 38(3): 843-856.
[1] Bauer F, Hua B, Jost J. The dual cheeger constant and spectra of infinite graphs. Adv Math, 2014, 251(2):147-194 [2] Bebernes J, Eberly D. Mathematical Problems from Combustion Theory. New York:Springer, 1989 [3] Chung F R K. Spectral Graph Theory, CBMS Reg Conf Ser Math. Providence, RI:Amer Math Soc, 1997 [4] Chung Y S, Lee Y S, Chung S Y. Extinction and positivity of the solutions of the heat equations with absorption on networks. J Math Anal Appl, 2011, 380(2):642-652 [5] Dodziuk J, Kendall W S. Combinatorial Laplacians and the isoperimetric inequality//Ellworthy K D. From Local Times to Global Geometry. Control and Physics. Pitman Research Notes in Mathematics Series 150. Essex:Longman Scientific and Technical, 1986:68-74 [6] Fujita H. On the blowing up of solutions of the Cauchy problem for ut=△u+u1+α. J Fac Sci Univ Tokyo Sect A Math, 1966, 13(2):109-124 [7] Fujita H. On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations. Symp Pure Mathematics, 1969, 18:105-113 [8] Grigor'yan A. Analysis on Graphs. University Bielefeld, 2009 [9] Grigor'yan A, Lin Y, Yang Y. Yamabe type equations on graphs. J Differential Equations, 2016, 261(9):4924-4943 [10] Grigor'yan A, Lin Y, Yang Y. Kazdan-Warner equation on graph. Calc Var Partial Differential Equations, 2016, 55(4):92(13 pages) [11] Grigor'yan A, Lin Y, Yang Y. Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci China Math, 2017, 60(7):1311-1324 [12] Haeseler S, Keller M, Lenz D, Wojciechowski R. Laplacians on infinite graphs:Dirichlet and Neumann boundary conditions. J Spectr Theory, 2012, 2(4):397-432 [13] Kaplan S. On the growth of solutions of quasilinear parabolic equations. Comm Pure Appl Math, 1963, 16:305-333 [14] Lin Y, Wu Y. On-diagonal lower estimate of heat kernels on graphs. J Math Anal Appl, 2017, 456:1040-1048 [15] Lin Y, Wu Y. The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc Var Partial Differential Equations, 2017, 56(4):102(22 pages) [16] Liu W, Chen K, Yu J. Extinction and asymptotic behavior of solutions for the ω-heat equation on graphs with source and interior absorption. J Math Anal Appl, 2016, 435(1):112-132 [17] Osgood W F. Beweis der Existenz einer Lösung der Differentialgleichung dy/dx=f(x, y) ohne Hinzunahme der Cauchy-Lipschitzschen Bedingung. Monatshefte der Mathemratik unid Physik, 1898, 9(1):331-345 [18] Weber A. Analysis of the physical Laplacian and the heat flow on a locally finite graph. J Math Anal Appl, 2012, 370(1):146-158 [19] Wojciechowski R. Heat kernel and essential spectrum of infinite graphs. Indiana Univ Math J, 2008, 58(3):1419-1442 [20] Xin Q, Xu L, Mu C. Blow-up for the ω-heat equation with Dirichelet boundary conditions and a reaction term on graphs. Appl Anal, 2014, 93(8):1691-1701 |
[1] | Xiao SU, Shubin WANG. ON THE CAUCHY PROBLEM FOR THE GENERALIZED BOUSSINESQ EQUATION WITH A DAMPED TERM* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1766-1786. |
[2] | Yiting WU. BLOW-UP CONDITIONS FOR A SEMILINEAR PARABOLIC SYSTEM ON LOCALLY FINITE GRAPHS [J]. Acta mathematica scientia,Series B, 2024, 44(2): 609-631. |
[3] | Qianqian BAI, Xiaoguang LI, Li ZHANG. BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHR ÖDINGER EQUATIONS IN THE RADIAL CASE∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1841-1864. |
[4] | Qianqian BAI, Xiaoguang LI, Li ZHANG. BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHR ÖDINGER EQUATIONS IN THE RADIAL CASE∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1852-1864. |
[5] | Xuemei Zhang, Shikun Kan. SUFFICIENT AND NECESSARY CONDITIONS ON THE EXISTENCE AND ESTIMATES OF BOUNDARY BLOW-UP SOLUTIONS FOR SINGULAR p-LAPLACIAN EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1175-1194. |
[6] | Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 736-750. |
[7] | Changxing MIAO, Junyong ZHANG, Jiqiang ZHENG. A NONLINEAR SCHRÖDINGER EQUATION WITH COULOMB POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2230-2256. |
[8] | Chao Jiang, Zuhan Liu, Ling Zhou. BLOW-UP IN A FRACTIONAL LAPLACIAN MUTUALISTIC MODEL WITH NEUMANN BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1809-1816. |
[9] | Guotao WANG, Zedong YANG, Jiafa XU, Lihong ZHANG. THE EXISTENCE AND BLOW-UP OF THE RADIAL SOLUTIONS OF A ${(k_{1},k_{2})}$-HESSIAN SYSTEM INVOLVING A NONLINEAR OPERATOR AND GRADIENT [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1414-1426. |
[10] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series B, 2022, 42(3): 887-902. |
[11] | Banghe LI. UNDERSTANDING SCHUBERT'S BOOK (II) [J]. Acta mathematica scientia,Series B, 2022, 42(1): 1-48. |
[12] | Hua CHEN, Nian LIU. ON THE EXISTENCE WITH EXPONENTIAL DECAY AND THE BLOW-UP OF SOLUTIONS FOR COUPLED SYSTEMS OF SEMI-LINEAR CORNER-DEGENERATE PARABOLIC EQUATIONS WITH SINGULAR POTENTIALS [J]. Acta mathematica scientia,Series B, 2021, 41(1): 257-282. |
[13] | Ji LI, Carole ROSIER. PARAMETERS IDENTIFICATION IN A SALTWATER INTRUSION PROBLEM [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1563-1584. |
[14] | Zongguang LI, Rui LIU. BLOW-UP SOLUTIONS FOR A CASE OF b-FAMILY EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(4): 910-920. |
[15] | Guangwu WANG, Boling GUO. A BLOW-UP CRITERION OF STRONG SOLUTIONS TO THE QUANTUM HYDRODYNAMIC MODEL [J]. Acta mathematica scientia,Series B, 2020, 40(3): 795-804. |
|