Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (4): 1121-1142.doi: 10.1016/S0252-9602(18)30803-8
• Articles • Previous Articles Next Articles
Shinji ADACHI1, Masataka SHIBATA2, Tatsuya WATANABE3
Received:
2017-02-10
Revised:
2018-05-01
Online:
2018-08-25
Published:
2018-08-25
Contact:
Shinji ADACHI,E-mail:adachi@shizuoka.ac.jp
E-mail:adachi@shizuoka.ac.jp
Supported by:
The third author is supported by JSPS Grant-in-Aid for Scientific Research (C) (15K04970).
Shinji ADACHI, Masataka SHIBATA, Tatsuya WATANABE. A NOTE ON THE UNIQUENESS AND THE NON-DEGENERACY OF POSITIVE RADIAL SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS AND ITS APPLICATION[J].Acta mathematica scientia,Series B, 2018, 38(4): 1121-1142.
[1] | Adachi S, Watanabe T. Uniqueness of the ground state solutions of quasilinear Schrödinger equations. Nonlinear Anal, 2012, 75:819-833 |
[2] | Adachi S, Watanabe T. Asymptotic uniqueness of ground states for a class of quasilinear Schrödinger equations with H1-supercritical exponent. J Differential Equations, 2016, 260:3086-3118 |
[3] | Adachi S, Shibata M, Watanabe T. Global uniqueness results for ground states for a class of quasilinear elliptic equations. Kodai Math J, 2017, 40:117-142 |
[4] | Bates P, Shi J. Existence and instability of spike layer solutions to singular perturbation problems. J Funct Anal, 2002, 196:429-482 |
[5] | Berestycki H, Gallouët T, Kavian O. Equations de champs scalaires euclidens non linéaires dans le plan. C R Acad Paris Sér I Math, 1984, 297:307-310 |
[6] | Berestycki H, Lions P L. Nonlinear scalar fields equations, I. Existence of a ground state. Arch Ration Mech Anal, 1983, 82:313-345 |
[7] | Brizhik L, Eremko A, Piette B, Zahkrzewski W J. Static solutions of a D-dimensional modified nonlinear Schrödinger equation. Nonlinearity, 2003, 161481-1497 |
[8] | Byeon J, Jeanjean L, Maris M. Symmetry and monotonicity of least energy solutions. Calc Var Partial Differential Equations, 2009, 36:481-492 |
[9] | Chen J, Li Y, Wang Z Q. Stability of standing waves for a class of quasilinear Schrödinger equations. European J Appl Math, 2012, 23:611-633 |
[10] | Coffman C V. Uniqueness of the ground state solution for △u-u+u3=0 and a variational characterization of other solutions. Arch Ration Mech Anal, 1972, 46:81-95 |
[11] | Colin M, Jeanjean L, Squassina M. Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity, 2010, 23:1353-1385 |
[12] | Colin M, Ohta M. Instability of ground states for a quasilinear Schrödinger equation. Differential Integral Equations, 2014, 27:613-624 |
[13] | Cortázar C, Elgueta M, Felmer P. Uniqueness of positive solutions of △u + f(u)=0 in RN, N ≥ 3. Arch Ration Mech Anal, 1998, 142:127-141 |
[14] | Floer A, Weinstein A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J Funct Anal, 1986, 69:397-408 |
[15] | Gidas B, Ni W M, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in RN. Adv Math Suppl Stud, 1981, 7A:369-402 |
[16] | Gladiali F, Squassina M. Uniqueness of ground states for a class of quasi-linear elliptic equations. Adv Nonlinear Anal, 2012, 1:159-179 |
[17] | Hirata J, Ikoma N, Tanaka K. Nonlinear scalar field equations in RN:mountain pass and symmetric mountain pass approaches. Topol Methods Nonlinear Anal, 2010, 35:253-276 |
[18] | Korman P. A global approach to ground state solutions. Electron J Differential Equations, 2008, 122:1-13 |
[19] | Kurihara S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50:3262-3267 |
[20] | Kwong M K. Uniqueness of positive solutions of △u -u + up=0 in RN. Arch Ration Mech Anal, 1989, 105:243-266 |
[21] | Mariş M. Existence of nonstationary bubbles in higher dimensions. J Math Pures Appl, 2002, 81:1207-1239 |
[22] | Mcleod K. Uniqueness of positive radial solutions of △u+f(u)=0 in RN, Ⅱ. Trans Amer Math Soc, 1993, 339:495-505 |
[23] | Mcleod K, Serrin J. Uniqueness of positive radial solutions of △u=f(u)=0 in RN. Arch Ration Mech Anal, 1987, 99:115-145 |
[24] | Ni W M, Takagi I. Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math J, 1993, 70:247-281 |
[25] | Ouyang T, Shi J. Exact multiplicity of positive solutions for a class of semilinear problems:Ⅱ. J Differential Equations, 1999, 158:94-151 |
[26] | Peletier L A, Serrin J. Uniqueness of positive solutions of semilinear equations in Rn. Arch Ration Mech Anal, 1983, 81:181-197 |
[27] | Peletier L A, Serrin J. Uniqueness of non-negative solutions of semilinear equations in Rn. J Differential Equations, 1986, 61:380-397 |
[28] | Selvitella A. Nondegeneracy of the ground state for quasilinear Schrödinger equations. Calc Var Partial Differential Equations, 2015, 53:349-364 |
[29] | Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49:897-923 |
[30] | Stuart C. Lectures on the orbital stability of standing waves and applications to the nonlinear Schrödinger equation. Milan J Math, 2008, 76:329-399 |
[1] | Kamla Kant Mishra, Shruti Dubey. APPROXIMATE CONTROLLABILITY OF NONLINEAR EVOLUTION FRACTIONAL CONTROL SYSTEM WITH DELAY [J]. Acta mathematica scientia,Series B, 2025, 45(2): 553-568. |
[2] | Li hu, Zhiyuan li, Xiaona yang. A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 2019-2040. |
[3] | Fan YANG, Congming LI. WEAK-STRONG UNIQUENESS FOR THREE DIMENSIONAL INCOMPRESSIBLE ACTIVE LIQUID CRYSTALS [J]. Acta mathematica scientia,Series B, 2024, 44(4): 1415-1440. |
[4] | Yazhou CHEN, Hakho HONG, Xiaoding SHI. THE ASYMPTOTIC STABILITY OF PHASE SEPARATION STATES FOR COMPRESSIBLE IMMISCIBLE TWO-PHASE FLOW IN 3D* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2133-2158. |
[5] | Haitao WANG, Xiongtao ZHANG. THE REGULARITY AND UNIQUENESS OF A GLOBAL SOLUTION TO THE ISENTROPIC NAVIER-STOKES EQUATION WITH ROUGH INITIAL DATA∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1675-1716. |
[6] | Leilei CUI, Jiaxing GUO, Gongbao LI. THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1131-1160. |
[7] | Hakho Hong. THE EXISTENCE OF GLOBAL SOLUTIONS FOR THE FULL NAVIER-STOKES-KORTEWEG SYSTEM OF VAN DER WAALS GAS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(2): 469-491. |
[8] | Jianli XIANG, Guozheng YAN. UNIQUENESS OF INVERSE TRANSMISSION SCATTERING WITH A CONDUCTIVE BOUNDARY CONDITION BY PHASELESS FAR FIELD PATTERN* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 450-468. |
[9] | Yujuan CHEN, Lei WEI, Yimin ZHANG. THE ASYMPTOTIC BEHAVIOR AND SYMMETRY OF POSITIVE SOLUTIONS TO p-LAPLACIAN EQUATIONS IN A HALF-SPACE [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2149-2164. |
[10] | Jiaxing HUANG, Tuen Wai NG. A UNIQUENESS THEOREM FOR HOLOMORPHIC MAPPINGS IN THE DISK SHARING TOTALLY GEODESIC HYPERSURFACES [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1631-1644. |
[11] | Xiaojun HUANG. REVISITING A NON-DEGENERACY PROPERTY FOR EXTREMAL MAPPINGS [J]. Acta mathematica scientia,Series B, 2021, 41(6): 1829-1838. |
[12] | Jianli XIANG, Guozheng YAN. UNIQUENESS OF THE INVERSE TRANSMISSION SCATTERING WITH A CONDUCTIVE BOUNDARY CONDITION [J]. Acta mathematica scientia,Series B, 2021, 41(3): 925-940. |
[13] | Quansen JIU, Fengchao WANG. LOCAL EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS TO THE TWO DIMENSIONAL NONHOMOGENEOUS INCOMPRESSIBLE PRIMITIVE EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1316-1334. |
[14] | Junfan CHEN, Chunhui QIU. UNIQUENESS THEOREMS OF L-FUNCTIONS IN THE EXTENDED SELBERG CLASS [J]. Acta mathematica scientia,Series B, 2020, 40(4): 970-980. |
[15] | Yang TAN, Yinying KONG. THE UNIQUENESS FOR ALGEBROID FUNCTIONS OF FINITE ORDER [J]. Acta mathematica scientia,Series B, 2020, 40(4): 981-990. |
|