[1] Allahem A, Boulaaras S, Cherif B. A posteriori error estimate of the theta time scheme combined with a finite element spatial approximation for evolutionary HJB equation with linear source terms. Journal of Computational and Theoretical Nanoscience, 2017, 14(2):935-946 [2] Badea L. On the schwarz alternating method with more than two subdomains for monotone problems. SIAM Journal on Numerical Analysis, 1991, 28:179-204 [3] Bensoussan A, Lions J L. Contrôle impulsionnel et In équations Quasi-variationnelles. Dunod, 1982 [4] Boulaaras S, Haiour M. Overlapping domain decomposition methods for elliptic quasi-variational inequalities related to impulse control problem with mixed boundary conditions. Proc Indian Acad Sci (Math Sci), 2011, 121(4):481-493 [5] Boulaaras S, Habita K, Haiour M. Asymptotic behavior and a posteriori error estimates for the generalized overlapping domain decomposition method for parabolic equation. Boundary Value Problems, 2015, 2015:124. DOI:10.1186/s13661-015-0398-1 [6] Boulaaras S. Asymptotic behavior and a posteriori error estimates in Sobolev spaces for the generalized overlapping domain decomposition method for evolutionary HJB equation with non linear source terms, part 1. J Nonlinear Sci Appl, 2016, 9(3):736-756 [7] Boulaaras S, Allahem A, Haiour M, Zennir K, Ghanem S, Cherif B. A posteriori error estimates in H1(Ω) space for parabolic quasi-variational inequalities with linear source terms related to American options problem. Appl Math Inf Sci, 2016, 10(3):1-14 [8] Douglas Jr J, Huang C S. An accelerated domain decomposition procedure based on Robin transmissionconditions. BIT, Numerical Mathematics, 1997, 37:678-686 [9] Engquist B, Zhao H K. Absorbing boundary conditions for domain decomposition. Applied Numerical Mathematics, 1998, 27:341-365 [10] Kuznetsov YU A. Overlapping domain decomposition method for parabolic problem. Contempary Mathematics, 1994, 157:63-69 [11] Lions P L. On the Schwarz alternating method I//Glowinski R, Golub G H, Meurant G A, Periaux J, eds. First International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, 1988:1-42 [12] Chan T F, Hou T Y, Lions P L. Geometry related convergence results for domain decomposition algorithms. SIAM Journal on Numerical Analysis, 1991, 28:378-391 [13] Quarteroni A, Valli A. Domain Decomposition Methods for Partial Differential Equations. Oxford, UK:The Clarend on Press, 1999 [14] Toselli A, Widlund O. Domain Decomposition Methods Algorithms and Theory. Vol 34 of Springer Seriesin Computational Mathematics. Berlin:Springer, 2005 [15] Maday Y, Magoul'es F. Improved ad hoc interface conditions for Schwarz solution procedure tuned to highly heterogeneous media. Applied Mathematical Modelling, 2006, 30(8):731-743 [16] Maday Y, Magoules F. A survey of various absorbing interface conditions for the Schwarz algorithm tuned to highly heterogeneous media//Domain Decomposition Methods:Theory and Applications. Vol 25 of Gakuto International Series. Mathematical Sciences Applications. Tokyo:Gakkotosho, 2006:65-93 [17] Farhat C, Le Tallec P. Vista in domain decomposition methods. Computer Methods in Applied Mechanics and Engineering, 2000, 184(2/4):143-520 [18] Magoules F, Rixen D. Domain decomposition methods:recent advances and new challengesin engineering. Computer Methods in Applied Mechanics and Engineering, 2007, 196(8):1345-1346 [19] Nataf F. Recent developments on optimized Schwarz methods//Domain Decomposition Methods in Science and Engineering XVI. Vol 55 of Lecture Notes in Computational Science and Engineering. Berlin:Springer, 2007:115-125 [20] Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York:Wiley Interscience, 2000 [21] Verfurth A. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Stuttgart:Wiley Teubner, 1996 [22] Lions P L. On the Schwarz alternating method I//First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987). Philadelphia:SIAM, 1988:1-42 [23] Lions P L. On the Schwarz alternating method Ⅱ//Stochastic Interpretation and Order Properties, Domain Decomposition Methods (Los angeles, Calif, 1988). Philadelphia:SIAM, 1989:47-70 [24] Lube G, Muller L, Otto F C. A non-overlapping domain decomposition method for advection-diffusion problem. Computing, 2000, 64(1):49-68 [25] Otto F C, Lube G. A posteriori estimates for a non-overlapping domain decomposition method. Computing, 1999, 62(1):27-43 [26] Bernardi C, Chacon Rebollo T, Chacon Vera E, Franco Coronil D. A posteriori error analysis for twooverlapping domain decomposition techniques. Applied Numerical Mathematics, 2009, 59(6):1214-1236 [27] Benlarbi H, Chibi A S. A posteriori error estimates for the generalized overlapping domain decomposition methods. Journal of Applied Mathematics, 2012, Article ID 947085 |