[1] Asmussen S. Convergence rates for branching processes. Ann Probab, 1976, 4(1):139-146 [2] Asmussen S, Hering H. Branching Processes. Boston, MA:Birkhäuser Boston, Inc, 1983 [3] Asmussen S, Kaplan N. Branching random walks I. Stoch Process Appl, 1976, 4(1):1-13 [4] Athreya K B, Ney P E. Branching Processes. New York:Springer-Verlag, 1972 [5] Baum L E, Katz M. Convergence rates in the law of large numbers. Trans Amer Math Soc, 1965, 120:108-123 [6] Biggins J D. Growth rates in the branching random walk. Z Wahrsch Verw Geb, 1979, 48(1):17-34 [7] Biggins J D. The central limit theorem for the supercritical branching random walk, and related results. Stoch Process Appl, 1990, 34(2):255-274 [8] Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes, I, the Galton-Watson process. Adv Appl Probab, 1974, 6:711-731 [9] Chen X. Exact convergence rates for the distribution of particles in branching random walks. Ann Appl Probab, 2001, 11(4):1242-1262 [10] Gao Z-Q. Exact convergence rate of the local limit theorem for branching random walks on the integer lattice. Stoch Process Appl, 2017, 127(4):1282-1296 [11] Gao Z-Q, Liu Q. Second and third orders asymptotic expansions for the distributionof particles in a branching random walk with a random environment in time. Bernoulli, 2018, 24(1):772-800 [12] Gao Z-Q, Liu Q. Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time. Stoch Process Appl, 2016, 126(9):2634-2664 [13] Gao Z-Q, Liu Q, Wang H. Central limit theorems for a branching random walk with a random environment in time. Acta Math Sci, 2014, 34B(2):501-512 [14] Grübel R, Kabluchko Z. Edgeworth expansions for profiles of lattice branching random walks. Ann Inst H Poincaré Probab Statist, 2017, 53(4):2103-2134 [15] Gut A. Stopped Random Walks:Limit Theorems and Applications. 2nd ed. New York:Springer, 2009 [16] Harris T E. The Theory of Branching Processes. Berlin:Springer-Verlag, 1963 [17] Huang C, Liang X, Liu Q. Branching random walks with random environments in time. Frontiers of Mathematics in China, 2014, 9(4):835-842 [18] Kaplan N, Asmussen S. Branching random walks Ⅱ. Stoch Process Appl, 1976, 4(1):15-31 [19] Révész P. Random Walks of Infinitely Many Particles. River Edge, NJ:World Scientific Publishing Co Inc, 1994 [20] Yoshida N. Central limit theorem for branching random walks in random environment. Ann Appl Probab, 2008, 18(4):1619-1635 [21] Nakashima M. Almost sure central limit theorem for branching random walks in random environment. Ann Appl Probab, 2011, 21(1):351-373 [22] Petrov V V. Sums of Independent Random Variables. New York, Heidelberg:Springer-Verlag, 1975 [23] Shi Z. Branching Random Walks. Lecture Notes in Mathematics, Vol 2151. Cham:Springer, 2015 [24] Stam A J. On a conjecture by Harris. Z Wahrsch Verw Geb, 1966, 5:202-206 [25] Zeitouni O. Branching random walks and Gaussian fields. Lecture Notes, 2012 |