[1] Bergmann S. Uber die Kernfunktion eines Bereiches und ihr Verhalten am Rände I. J Reine Angew Math, 1933, 169:1-42 [2] Bergman S. The Kernel Function and Conformal Mapping. Providence, RI:American Mathematical Society, 1950 [3] Bojarski B, Haj lasz P. Pointwise inequalities for Sobolev functions and some applications. Studia Math, 1993, 106:77-92 [4] Duren P, Schuster A. Bergman Spaces. Mathematical Surveys and Monographs 100. Providence, RI:American Mathematical Society, 2004 [5] Haj lasz P. Sobolev spaces on an arbitrary metric space. Potential Anal, 1996, 5:403-415 [6] Haj lasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, 2000, 145(688):1-101 [7] Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces. Graduate Texts in Mathematics 199. New York:Springer, 2000 [8] Heinonen J. Lectures on Analysis on Metric Spaces. Berlin:Springer, 2001 [9] Koskela P, Saksman E. Pointwise characterizations of Hardy-Sobolev functions. Math Res Lett, 2008, 15:727-744 [10] Nam K. Lipschitz type characterizations of harmonic Bergman spaces. Bull Korean Math Soc, 2013, 50:1277-1288 [11] Peng R, Xing X, Jiang L. Pointwise multiplication operators from Hardy spaces to weighted Bergman spaces in the unit ball of $\mathbb{C}^n$. Acta Math Sci, 2019, 39B(4):1003-1016 [12] Sehba B F. Derivatives characterization of Bergman-Orlicz spaces and applications. arXiv:1610.01954 [13] Wulan H, Zhu K. Lipschitz type characterizations for Bergman spaces. Canad Math Bull, 2009, 52:613-626 [14] Yang D. New characterizations of Haj lasz-Sobolev spaces on metric spaces. Sci China Math, 2003, 46:675-689 [15] Zhu K. Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. New Nork:Springer, 2004 |