|    
[1]  Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws.  AMS/IP Stud Adv Math, 15. Providence, RI: Amer Math Soc, 2000:  77--110 
 
[2]  Degond P, Jin S,  Liu J.  Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851--892 
 
[3]  Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61: 345--361 
 
[4]  Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1):   135--148 
 
[5]  Duan R -J,  Liu H,  Ukai S,  Yang T. Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force. J Differ Equ, 2007, 238(5):  737--758 
 
[6]  Ducomet B. Some stability results for reactive Navier-Stokes-Poisson system, Evolution equations: existence, regularity and singularities (Warsaw, 1998), 83-118, Banach Center Pibl., 52, Polish Acad. Sci., Warsaw, 2000 
 
[6]  Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continous Dynamical System, 2004, 11(1): 113--130 
 
[7]  Ducomet B, Zlotnik A.  Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10):  1190--1198 
 
[8]  Hao C, Li H. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions. J Differ  Equ, 2009, 246:  4791--4812 
 
[9]  Hoff D,  Zumbrun K.  Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603--676 
 
[10]  Ju Q,  Li F,  Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ  Equ,  2009, 247: 203--224 
 
[11]  Kobayashi T, Suzuki T.  Weak solutions to the Navier-Stokes-Poisson equations. 2004, preprint. 
 
[12]  Li H -L, Matsumura A,  Zhang G. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Archive for Rational Mechanics and Analysis, in press. 
 
[13]  Liu T -P, Wang W -K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Comm Math Phys, 1998, 196: 145--173 
 
[14]  Matsumura A,  Nishida T. The initial value problem for the equations of  motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67--104 
 
[15]  Ponce G. Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9: 339--418 
 
[16]  Wang S,  Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differ  Equ, 2006, 31:  571--591 
 
[17]  Zhang Y, Tan Z.  On the existence of solutions to the Navier-Stokes-Poisoon equations of a two-dimensional compressible flow. Math Mathods Appl Sci, 2007, 30(3):  305--329 
  |