|   [1]  Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density//Scientific Papers, Volume II. 
Cambridge: Cambridge Univ Press, 1900: 200; Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I.  Proc R Soc London A, 1950, 201: 192--196 
[2]  Richtmyer R D. Taylor instability in shock acceleration of compressible fluids. Comm Pure Appl Math, 1960, 13:297--319; Meshkov E E. Izv Akad Nauk SSSR, Mekh Zhidk Gaz, 1969, 5: 151 
[3]  Andronov V, Bakhrakh B, Meshkov E, Mokhov V, Nikiforov V, Pevnitskii A, Tolshmyakov A. An experimental investigation and numerical modeling of turbulent mixing in one-dimensional flows. Sov Phys Dokl, 1982, 27: 393--396; Sov Phys JETP, 1967, 44: 424--427 
[4]  Read K I. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability. Physica D, 1984, 12: 45--58 
[5]  Dimonte G. Nonlinear evolution of the RT and RM instabilities. Phys Plasmas, 1999, 6: 2009--2015 
[6]  Ramaprabhu G, Andrews M J. Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers. J Fluid Mech, 2004, 502: 233--237 
[7]  Sharp D H.  An overview of Rayleigh-Taylor instability. Physica D, 1984, 12: 3--18 
[8]  Youngs D L. Modeling turbulent mixing by Rayleigh-Taylor instability. Physica D, 1989, 37: 270--287; Numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Physica D, 1984, 12: 32--44 
[9]  Besnard D, Harlow F, Rauenzahn R, Zemach C. Turbulent transport equations for variable-density turbulence and their relationship to two-field models. LANL Report LA-12303-MS, 1992 
[10]  Gauthier S, Bonnet M.  A k-ε model for turbulent mixing in shocktube flows induced by Rayleigh-Taylor instability. Phys Fluid A, 1990, 2: 1685--1694 
[11]  Dalziel S B, Linden P F, Youngs D L. Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability. J Fluid Mech, 1999, 399: 1-48 
[12]  Llor A. Bulk turbulent transport and structure in Rayleigh-Taylor, and Richtmyer-Meshkov instabilities. Laser Part Beams, 2003, 21: 305--310 
[13]  Scannapieco A J, Cheng B.  A multifluids interpenetra mix model. Phys Letts A, 2002, 299: 49--64 
[14]  Cranfill C W.  A new multifluid turbulent-mix-model. LANL Report LA-UR-92-2484, 1992 
[15]  Cheng B, Glimm J, Saltz D, Sharp D H. Boundary conditions for a two pressure two phase flow model. Physica D, 1999, 133: 84--105 
[16]  Livescu D, Ristorcelli J R. Buoyancy-driven variable-density turbulence. J Fluid Mech, 2006, 591: 43--71 
[17]  Dimotakis P E. Turbulent mixing. Annu Rev Fluid Mech, 2005, 37: 329--356 
[18]  Abarzhi S L. Review of nonlinear dynamics of the unstable fluid interface: Conservation laws and group theory. Phys Scr, 2008, T132: 014012 
[19]  Chen Y, Glimm J, Sharp D H,  Zhang Q. A two-phase flow model of the Rayleigh-Taylor mixing zone. Phys Fluids, 1996, 8: 816--825 
[20]  Mikaelian K. RT and RM instabilities in multilayer fluids with surface tension. Phys Rev A, 1990, 42: 7211--7225 
[21]  Freed N, Ofer D, Shvarts D,  Orszag S. Two-phase flow analysis of self-similar turbulent mixing by {Rayleigh-Taylor instability. Phys Fluids A, 1991, 3: 912--918; Alon U, Hecht J, Ofer D, Shvarts D. Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios. Phys Rev Lett, 1995, 74: 534--538 
[22]  Glimm J, Saltz D,  Sharp D H. Two-phase modeling of a fluid mixing layer. J Fluid Mech, 1997, 378: 119--143 
[23]  Glimm J, Sharp D H. Chaotic mixing as a renormalization group fixed point. Phys Rev Lett, 1990, 64: 2137--2139 
[24]  Cheng B, Glimm J,  Sharp D. Density dependence of RT and RM mixing fronts. Phys Lett A, 2000, 268: 366--374 
[25]  Cheng B, Glimm J, Sharp D H. Dynamical evolution of the RT and RM mixing fronts. Phys Rev E, 2002, 66: 036312 
[26]  Drew D A. Mathematical modeling of two-phase flow.  Ann Rev Fluid Mech, 1983, 15: 261--291 
[27]  Oron D, Arazi L, Kartoon D, Rikanati A, Alon U,  Sharts D. Dimensionality dependence of Rayleigh-Taylor and Richtmyer-Meshkov   instability late-time scaling laws. Phys Plasmas, 2001, 8: 2883--2889 
[28]  Alon U, Hecht J, Ofer D,  Shvarts D. Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov  mixing fronts at all density ratios. 
Phys Rev Lett, 1995, 74: 534--537 
[29]  Cheng B, Glimm J, Sharp D H. Multi-temperature multiphase flow model. Z Angew Math Phys, 2002, 53: 211--238 
[30]  Cheng B, Glimm J, Sharp D H. A three-dimensional renormalization group  bubble merger model for Rayleigh-Taylor mixing. Chaos, 2002, 12: 267--274 
[31]  Cheng B, Glimm J, Sharp D H, Yu Y. Multiphase flow model for unstable mixing of layered materials. Phys  of Fluid, 2005, 17: 087102 
[32]  Heng B, Glimm J,  Sharp D H, Yu Y.  A multiphase flow model for the layered incompressible materials. Physics Scripta, 2008, T132: 014016 
[33]  Wilson D C, Scannapieco A J, Cranfill C W, et al. Degradation of radiatively driven inertial confinement fusion capsule implosions by multifluid interpenetration mixing. Phys Plasmas, 2003, 10: 4427--4434 
[34]  Wilson D C, Scannapieco A J, Cranfill C W, Christensen C R. Multi-fluid interpenetration mixing in directly driven ICF capsule implosions. 
Phys Plasmas, 2004, 11: 2723--2728 
[35]  Christensen C R, Wilson D C, Barnes C W, et al. The influence of asymmetry on mix in direct-drive ICF experiments. Phys Plasmas, 2004, 11: 2771--2777 
[36]  Wilson D C, Kyrala G A, Benage J F, et al. The The effects of pre-mix on burn in ICF capsules. Journal of Physics: Conference Series, 2008, 112: 022015 
[37]  Hoffman N M, Wilson D C, Kyrala G A. Diagnosing radiation drive asymmetry and absorbed energy in ignition Hohlraums using gas-filled capsules. Rev Sci Instrum, 2006, 77: 10E705 
[38]  Rygg J R, Frenje J A, Li C K, Seguin F H, et al. Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGA. Phys Plasmas, 2007, 14: 056306 
[39]  Rygg J R.  Shock Convergence and Mix Dynamics in Inertial Confinement Fusion[D]. Department of Physics, MIT, 2006 
[40]  Grim G P, Bradley P A, Bredeweg T A,  Keksis A L, et al. Prompt radiochemistry at the national ignition facility. Rev Sci Instrum, 2008, 79: 10E503 
[41]  Wilson D C, Bradley P A, Cerjan C J, Salmonson J D, et al. Diagnosing ignition with DT reaction history. Rev Sci Instrum, 2008, 79: 10E525 
[42]  Wilson D C, Marshall F J, McKenty P W, et al. Mixing in thick-walled and pulse-shaped directly driven ICF capsule implosions. Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, UK, July, 2004 
[43]  Herrmann H W, Langenbrunner J R, Mack J M, Cooley J H, et al. Anomalous yield reduction in direct-drive deuterium/tritium  implosions due to He addition. Phys Plasmas, 2009, 16: 056312 
[44]  Scannapieco E, et al. In progress, 2009 
[45]  Cheng B, Cranfill C W,  Turner L. The characteristic analysis of a hybrid multifluid turbulent mix model. LA-13851, 2001 
[46]  Cheng B, Cranfill C W. Using the Green's function method to calculate pressure fluctuations in compressible multifluids. The Proceedings of the 9th International Conference on the Physics of Compressible Turbulent Mixing, Paris, July 2004 
[47]  Steinkamp M J, Clark T T, Harlow F H. Two-point description of two-fluid turbulent mixing I: Model formulation. Int J Multiph Flow, 1999, 25:599-637; Two-point description of two-fluid turbulent mixing II: Numerical solutions and comparisons with experiments. Int J Multiph Flow, 1999, 25: 639--682 
[48]  Dimonte G, Tipton R. KL turbulence model for the self-similar growth of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys Fluids, 2006, 18: 085101 
[49]  Jin H, Liu X F, Lu T, Cheng B, Glimm J, Sharp D H. Rayleigh-Taylor mixing rate for compressible flow. Phys Fluids, 2005, 17: 024104 
[50]  Vreman B, Geurts B,  Kuerten H. Large-eddy simulation of the turbulent mixing layer. J Fluid Mech, 1997, 339: 357--390 
[51]  Grinstein F F, Karniadakis G. Alternative LES and hybrid RANS/LES for the turbulent flows. J Fluids Engineering, 2002, 124: 821--824;  
Fureby C,  Tabor G. Mathematical and physical constraints on large-eddy simulations.  Theoret Comput Fluid Dynamics, 1997,  9: 85--102 
[52]  Cheng B, Scannapieco A J. Buoyancy-drag mix model obtained by multifluid interpenetration equations. Phys Rev E, 2005, 72: 046310 
[53]  Lim H, Yu Y, Glimm J, Li X L, Sharp D H. Chaos, transport, and mesh convergence for fluid mixing. Acta Mathematicae Applicatae Sinica, 2008, 24: 355--368 
[54]  Lim H, Yu Y, Glimm J, Li X L, Sharp D H. Multi Scale Models for Fluid Mixing. Compu Methods Appl Mech Engrg, 2008, 197: 3435--3444 
[55]  Lim H, Yu Y, Glimm J, Li X L, Sharp D H. Subgrid models for mass and thermal diffusion in turbulent mixing. Phys Fluids, 2008, Stony Brook Preprint SUNYSB-AMS-08-07 and Los Alamos National Laboratory Preprint LA-UR 08-07725; Submitted for Publication. 
[56]  Lim H, Yu Y, Glimm J, Li X L,  Sharp D H. Nearly discontinuous chaotic mixing. J High Energy Physics, 2008, {Stony Brook Preprint SUNYSB-AMS-09-02 and Los Alamos National Laboratory Preprint LA-UR 09-01364; Submitted for Publication.  |