Acta mathematica scientia,Series B ›› 2017, Vol. 37 ›› Issue (6): 1870-1880.doi: 10.1016/S0252-9602(17)30113-3
• Articles • Previous Articles
Quanqing LI1, Xian WU2
Received:
2016-02-29
Revised:
2017-04-29
Online:
2017-12-25
Published:
2017-12-25
Contact:
Xian WU
E-mail:wuxian2042@163.com
Supported by:
This work was supported in part by the National Natural Science Foundation of China (11501403; 11461023) and the Shanxi Province Science Foundation for Youths under grant 2013021001-3.
Quanqing LI, Xian WU. EXISTENCE OF NONTRIVIAL SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRÖDINGER EQUATIONS WITH CRITICAL OR SUPERCRITICAL GROWTHS[J].Acta mathematica scientia,Series B, 2017, 37(6): 1870-1880.
[1] Brüll L, Lange H. Solitary waves for quasilinear Schrödinger equations. Expo Math, 1986, 4:278-288 [2] Brandi H, Manus C, Mainfry G, Lehner T, Bonnaud G. Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys Fluids B, 1993, 5:3539-3550 [3] Bass F G, Nasanov N N. Nonlinear electromagnetic-spin waves. Phys Rep, 1990, 189:165-223 [4] Cuccagna S. On instability of excited states of the nonlinear Schrödinger equation. Phys D, 2009, 238:38-54 [5] Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation:a dual approach. Nonlinear Anal, 2004, 56:213-226 [6] Chen X L, Sudan R N. Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys Rev Lett, 1993, 70:2082-2085 [7] De Bouard A, Hayashi N, Saut J. Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Comm Math Phys, 1997, 189:73-105 [8] Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J Differ Equ, 2015, 258:115-147 [9] Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J Differ Equ, 2016, 260:1228-1262 [10] Makhankov V G, Fedyanin V K. Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phys Rep, 1984, 104:1-86 [11] Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys B, 1980, 37:83-87 [12] Fleming W H. A selection-migration model in population genetic. J Math Biol, 1975, 20:219-233 [13] Kurihara S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Jpn, 1981, 50:3262-3267 [14] Kelley P L. Self focusing of optical beams. Phys Rev Lett, 1965, 15:1005-1008 [15] Lange H, Poppenberg M, Teismann H. Nash-Moser methods for the solution of quasilinear Schrödinger equations. Comm Partial Differ Equ, 1999, 24:1399-1418 [16] Laedke E, Spatschek K, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24:2764-2769 [17] Liu J, Wang Z. Soliton solutions for quasilinear Schrödinger equations, I. Proc Amer Math Soc, 2002, 131:441-448 [18] Liu J, Wang Y, Wang Z. Soliton solutions for quasilinear Schrödinger equations, Ⅱ. J Differ Equ, 2003, 187:473-493 [19] Liu J, Wang Y, Wang Z. Solutions for quasilinear Schrödinger equations via the Nehari Method. Comm Partial Differ Equ, 2004, 29:879-901 [20] Moameni A. Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in RN. J Differ Equ, 2006, 229:570-587 [21] Kosevich A M, Ivanov B A, Kovalev A S. Magnetic solitons. Phys Rep, 1990, 194:117-238 [22] Willem M. Minimax Theorem. Boston, MA:Birkhäuser Boston, Inc, 1996 [23] Poppenberg M, Schmitt K, Wang Z. On the existence of soliton solutons to quasilinear Schrödinger equations. Calc Var Partial Differ Equ, 2002, 14:329-344 [24] Ritchie B. Relativistic self-focusing and channel formation in laser-plasma interaction. Phys Rev E, 1994, 50:687-689 [25] Quispel G R W, Capel H W. Equation of motion for the Heisenberg spin chain. Phys A, 1982, 110:41-80 [26] Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc Var, 2010, 39:1-33 [27] Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal, 2013, 80:194-201 [28] Wang Y. A class of quasilinear Schrödinger equations with critical or supercritical exponents. Comput Math Appl, 2015, 70:562-572 [29] Wu X. Multiple solutions for quasilinear Schrödinger equations with a parameter. J Differ Equ, 2014, 256:2619-2632 |
[1] | Lucas da Silva, Marco A. S. Souto. A GENERALIZED CHOQUARD EQUATION WITH WEIGHTED ANISOTROPIC STEIN-WEISS POTENTIAL ON A NONREFLEXIVE ORLICZ-SOBOLEV SPACES [J]. Acta mathematica scientia,Series B, 2025, 45(2): 569-601. |
[2] | Yuxi Meng, Xiaoming He. MULTIPLICITY OF NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH DOUBLY CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2024, 44(3): 997-1019. |
[3] | Yansheng ZHONG, Yongqing LI. MULTIPLE POSITIVE SOLUTIONS TO A CLASS OF MODIFIED NONLINEAR SCHRÖDINGER EQUATION IN A HIGH DIMENSION∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1819-1840. |
[4] | Yuanyuan Luo, Dongmei Gao, Jun Wang. EXISTENCE OF A GROUND STATE SOLUTION FOR THE CHOQUARD EQUATION WITH NONPERIODIC POTENTIALS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 303-323. |
[5] | Huirong PI, Yong ZENG. EXISTENCE RESULTS FOR THE KIRCHHOFF TYPE EQUATION WITH A GENERAL NONLINEAR TERM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2063-2077. |
[6] | Li WANG, Kun CHENG, Jixiu WANG. THE MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR THE KIRCHHOFF-CHOQUARD EQUATION WITH MAGNETIC FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1453-1484. |
[7] | Zhongyuan LIU. MULTIPLE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER EQUATIONS WITH SATURABLE NONLINEARITY [J]. Acta mathematica scientia,Series B, 2021, 41(2): 493-504. |
[8] | Jae-Myoung KIM, Yun-Ho KIM, Jongrak LEE. RADIALLY SYMMETRIC SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING NONHOMOGENEOUS OPERATORS IN AN ORLICZ-SOBOLEV SPACE SETTING [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1679-1699. |
[9] | Lun GUO, Tingxi HU. MULTI-BUMP SOLUTIONS FOR NONLINEAR CHOQUARD EQUATION WITH POTENTIAL WELLS AND A GENERAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2020, 40(2): 316-340. |
[10] | Huifang JIA, Gongbao LI. MULTIPLICITY AND CONCENTRATION BEHAVIOUR OF POSITIVE SOLUTIONS FOR SCHRÖDINGER-KIRCHHOFF TYPE EQUATIONS INVOLVING THE p-LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2018, 38(2): 391-418. |
[11] | Jinguo ZHANG, Xiaochun LIU. THREE SOLUTIONS FOR A FRACTIONAL ELLIPTIC PROBLEMS WITH CRITICAL AND SUPERCRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1819-1831. |
[12] | Liping XU, Haibo CHEN. MULTIPLICITY RESULTS FOR FOURTH ORDER ELLIPTIC EQUATIONS OF KIRCHHOFF-TYPE [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1067-1076. |
[13] | SHANG Yue-Yun, WANG Li. MULTIPLE NONTRIVIAL SOLUTIONS FOR A CLASS OF SEMILINEAR POLYHARMONIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1495-1509. |
[14] | WU Yuan-Ze, HUANG Yi-Sheng, LIU Zeng. SIGN-CHANGING SOLUTIONS FOR SCHRÖDINGER EQUATIONS WITH VANISHING AND SIGN-CHANGING POTENTIALS [J]. Acta mathematica scientia,Series B, 2014, 34(3): 691-702. |
[15] | WANG Ying, LUO Dang, WANG Ming-Xin. POSITIVE SOLUTIONS TO THE p-LAPLACIAN WITH SINGULAR WEIGHTS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1002-1020. |
|