[1] Adachi S, Watanabe T. Uniqueness of the ground state solutions of quasilinear Schrödinger equations. Nonlinear Anal, 2012, 75:819-833 [2] Adachi S, Watanabe T. Asymptotic uniqueness of ground states for a class of quasilinear Schrödinger equations with H1-supercritical exponent. J Differential Equations, 2016, 260:3086-3118 [3] Adachi S, Shibata M, Watanabe T. Global uniqueness results for ground states for a class of quasilinear elliptic equations. Kodai Math J, 2017, 40:117-142 [4] Bates P, Shi J. Existence and instability of spike layer solutions to singular perturbation problems. J Funct Anal, 2002, 196:429-482 [5] Berestycki H, Gallouët T, Kavian O. Equations de champs scalaires euclidens non linéaires dans le plan. C R Acad Paris Sér I Math, 1984, 297:307-310 [6] Berestycki H, Lions P L. Nonlinear scalar fields equations, I. Existence of a ground state. Arch Ration Mech Anal, 1983, 82:313-345 [7] Brizhik L, Eremko A, Piette B, Zahkrzewski W J. Static solutions of a D-dimensional modified nonlinear Schrödinger equation. Nonlinearity, 2003, 161481-1497 [8] Byeon J, Jeanjean L, Maris M. Symmetry and monotonicity of least energy solutions. Calc Var Partial Differential Equations, 2009, 36:481-492 [9] Chen J, Li Y, Wang Z Q. Stability of standing waves for a class of quasilinear Schrödinger equations. European J Appl Math, 2012, 23:611-633 [10] Coffman C V. Uniqueness of the ground state solution for △u-u+u3=0 and a variational characterization of other solutions. Arch Ration Mech Anal, 1972, 46:81-95 [11] Colin M, Jeanjean L, Squassina M. Stability and instability results for standing waves of quasi-linear Schrödinger equations. Nonlinearity, 2010, 23:1353-1385 [12] Colin M, Ohta M. Instability of ground states for a quasilinear Schrödinger equation. Differential Integral Equations, 2014, 27:613-624 [13] Cortázar C, Elgueta M, Felmer P. Uniqueness of positive solutions of △u + f(u)=0 in RN, N ≥ 3. Arch Ration Mech Anal, 1998, 142:127-141 [14] Floer A, Weinstein A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J Funct Anal, 1986, 69:397-408 [15] Gidas B, Ni W M, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in RN. Adv Math Suppl Stud, 1981, 7A:369-402 [16] Gladiali F, Squassina M. Uniqueness of ground states for a class of quasi-linear elliptic equations. Adv Nonlinear Anal, 2012, 1:159-179 [17] Hirata J, Ikoma N, Tanaka K. Nonlinear scalar field equations in RN:mountain pass and symmetric mountain pass approaches. Topol Methods Nonlinear Anal, 2010, 35:253-276 [18] Korman P. A global approach to ground state solutions. Electron J Differential Equations, 2008, 122:1-13 [19] Kurihara S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50:3262-3267 [20] Kwong M K. Uniqueness of positive solutions of △u -u + up=0 in RN. Arch Ration Mech Anal, 1989, 105:243-266 [21] Mariş M. Existence of nonstationary bubbles in higher dimensions. J Math Pures Appl, 2002, 81:1207-1239 [22] Mcleod K. Uniqueness of positive radial solutions of △u+f(u)=0 in RN, Ⅱ. Trans Amer Math Soc, 1993, 339:495-505 [23] Mcleod K, Serrin J. Uniqueness of positive radial solutions of △u=f(u)=0 in RN. Arch Ration Mech Anal, 1987, 99:115-145 [24] Ni W M, Takagi I. Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math J, 1993, 70:247-281 [25] Ouyang T, Shi J. Exact multiplicity of positive solutions for a class of semilinear problems:Ⅱ. J Differential Equations, 1999, 158:94-151 [26] Peletier L A, Serrin J. Uniqueness of positive solutions of semilinear equations in Rn. Arch Ration Mech Anal, 1983, 81:181-197 [27] Peletier L A, Serrin J. Uniqueness of non-negative solutions of semilinear equations in Rn. J Differential Equations, 1986, 61:380-397 [28] Selvitella A. Nondegeneracy of the ground state for quasilinear Schrödinger equations. Calc Var Partial Differential Equations, 2015, 53:349-364 [29] Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49:897-923 [30] Stuart C. Lectures on the orbital stability of standing waves and applications to the nonlinear Schrödinger equation. Milan J Math, 2008, 76:329-399 |