[1] Ambrosetti A, Rabinowitz P. Dual variational methods in critical points theory and applications. J Funct Anal, 1973, 14:349-381 [2] Alves C O, Souto M A S. Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z Angew Math Phys, 2014, 65:1153-1166 [3] Barles G, Chasseigne E, Imbert C. Hölder continuity of solutions of second-order non-linear elliptic integrodifferential equations. J Eur Math Soc, 2011, 13:1-26 [4] Barles G, Chasseigne E, Ciomaga A, Imbert C. Lipschitz regularity of solutions for mixed integro-differential equations. J Differential Equations, 2012, 252:6012-6060 [5] Barles G, Chasseigne E, Ciomaga A, Imbert C. Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations. Calc Var Partial Differential Equations, 2014, 50:283-304 [6] Bartsch T, Liu Z L, Weth T. Sign changing solutions of superlinear Schrödinger equations. Comm Partial Differential Equations, 2004, 29:25-42 [7] Bartsch T, Weth T. Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann Inst Henri Poincaré (C) Nonlinear Anal, 2005, 22:259-281 [8] Berestycki H, Lions P-L. Nonlinear scalar field equations, Ⅱ, Existence of infinitely many solutions. Arch Rational Mech Anal, 1983, 82:347-375 [9] Barrios B, Colorado E, Servadei R, Soria F. A critical fractional equation with concave-convex power nonlinearities. Ann Inst Henri Poincaré (C) Nonlinear Anal, 2015, 32:875-900 [10] Cabré X, Sire Y. Nonlinear equations for fractional Laplacians I:Regularity, maximum principles, and Hamiltonian estimates. Ann Inst Henri Poincaré (C) Nonlinear Anal, 2014, 31:23-53 [11] Cabré X, Sire Y. Nonlinear equations for fractional Laplacians Ⅱ:Existence, uniqueness, and qualitative properties of solutions. Trans Amer Math Soc, 2015, 367:911-941 [12] Chang X, Wang Z-Q. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity, 2013, 26:479-494 [13] Cheng M. Bound state for the fractional Schrödinger equation with unbounded potential. J Math Phys, 2012, 53:043507 [14] Ciomaga A. On the strong maximum principle for second order nonlinear parabolic integro-differential equations. Adv Differential Equations, 2012, 17:635-671 [15] Dávila J, del Pino M, Dipierro S, Valdinoci E. Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal PDE, 2015, 8:1165-1235 [16] Dávila J, del Pino M, Wei J. Concentrating standing waves for the fractional nonlinear Schrödinger equation. J Differential Equations, 2014, 256:858-892 [17] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136:521-573 [18] Esfahani A. Anisotropic Gagliardo-Nirenberg inequality with fractional derivatives. Z Angew Math Phys, 2015, 66:3345-3356 [19] Esfahani A, Pastor A. Instability of solitary wave solutions for the generalized BO-ZK equation. J Differential Equations, 2009, 247:3181-3201 [20] Esfahani A, Pastor A, Bona J L. Stability and decay properties of solitary wave solutions for the generalized BOZK equation. Adv Differential Equations, 2015, 20:801-834 [21] Fall M M, Valdinoci E. Uniqueness and nondegeneracy of positive solutions of (-△)su + u=up in Rn when s is close to 1. Comm Math Phys, 2014, 329:383-404 [22] Farina A, Valdinoci E. Regularity and rigidity theorems for a class of anisotropic nonlocal operators. Manuscripta Math, 2017, 153:53-70 [23] Felmer P, Quaas A, Tan J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142:1237-1262 [24] Furtado M F, Maia L A, Medeiros E S. Positive and nodal solutions for a nonlinear Schrdinger equation with indefinite potential. Adv Nonlinear Stud, 2008, 8:353-373 [25] Frank R L, Lenzmann E. Uniqueness of non-linear ground states for fractional Laplacians in R. Acta Math, 2013, 210:261-318 [26] Frank R L, Lenzmann E, Silvestre L. Uniqueness of radial solutions for the fractional Laplacian. Comm Pure Appl Math, 2016, 69:1671-1726 [27] Frank R L, Lieb E H, Seiringer R. Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J Amer Math Soc, 2008, 21:925-950 [28] Haškovec J, Schmeiser C. A note on the anisotropic generalizations of the Sobolev and Morrey embedding theorems. Monatsh Math, 2009, 158:71-79 [29] Jones C., Küpper T. On the infinitely many solutions of a semilinear elliptic equation. SIAM J Math Anal, 1986, 17:803-835 [30] Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268:298-305 [31] Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66:056108 [32] Latorre J C, Minzoni A A, Smyth N F, Vargas C A. Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kuznetsov lateral dispersion. Chaos, 2006, 16:043103-1-043103-10 [33] Lions P-L. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann Inst H Poincaré, Anal Non linéaire, 1984, 1:109-145; The locally compact case. Ⅱ. Ann Inst H Poincaré, Anal Non linéaire, 1984, 4:223-283 [34] Miranda C. Un'osservazione su un teorema di Brouwer. Bol Un Mat Ital, 1940, 3:5-7 [35] Noussair E S, Wei J C. On the effect of domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem. Indiana Univ Math J, 1997, 46:1321-1332 [36] Ribaud F, Vento S. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete Contin Dyn Syst, 2017, 37:449-483 [37] Pucci P, Serrin J. A general variational inequality. Indiana Univ Math J, 1986, 35:681-703 [38] Ros-Oton X, Serra J. Nonexistence results for nonlocal equations with critical and supercritical nonlinearities. Comm Partial Differential Equations, 2015, 40:115-133 [39] Secchi S. Ground state solutions for nonlinear fractional Schrödinger equations in RN. J Math Phys, 2013, 54:031501 [40] Servadei R, Valdinoci E. Mountain Pass solutions for non-local elliptic operators. J Math Anal Appl, 2012, 389:887-898 [41] Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367:67-102 [42] Struwe M. Variational Methods:Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergeb Math Grenzgeb (3). Berlin, Heidelberg:Springer-Verlag, 1990 [43] Wang Z, Zhou H-S. Sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3. Calc Var, 2015, 52:927-943 [44] Wang Z, Zhou H-S. Radial sign-changing solution for fractional Schrödinger equation. Discrete Contin Dyn Syst, 2016, 36:499-508 |