Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    BIG HANKEL OPERATORS ON HARDY SPACES OF STRONGLY PSEUDOCONVEX DOMAINS
    Boyong Chen, Liangying Jiang
    Acta mathematica scientia,Series B    2024, 44 (3): 789-809.   DOI: 10.1007/s10473-024-0301-1
    Abstract208)            Save
    In this article, we investigate the (big) Hankel operator $H_f$ on the Hardy spaces of bounded strongly pseudoconvex domains $\Omega$ in $\mathbb{C}^n$. We observe that $H_f$ is bounded on $H^p(\Omega)$ ($1< p<\infty$) if $f$ belongs to BMO and we obtain some characterizations for $H_f$ on $H^2(\Omega)$ of other pseudoconvex domains. In these arguments, Amar's $L^p$-estimations and Berndtsson's $L^2$-estimations for solutions of the $\bar{\partial}_b$-equation play a crucial role. In addition, we solve Gleason's problem for Hardy spaces $H^p(\Omega)$ ($1\le p\le\infty$) of bounded strongly pseudoconvex domains.
    Reference | Related Articles | Metrics
    GENERALIZED COUNTING FUNCTIONS AND COMPOSITION OPERATORS ON WEIGHTED BERGMAN SPACES OF DIRICHLET SERIES
    Min He, Maofa Wang, Jiale Chen
    Acta mathematica scientia,Series B    2025, 45 (2): 291-309.   DOI: 10.1007/s10473-025-0201-z
    Abstract198)            Save
    In this paper, we study composition operators on weighted Bergman spaces of Dirichlet series. We first establish some Littlewood-type inequalities for generalized mean counting functions. Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series. The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
    Reference | Related Articles | Metrics
    LÉVY AREA ANALYSIS AND PARAMETER ESTIMATION FOR FOU PROCESSES VIA NON-GEOMETRIC ROUGH PATH THEORY*
    Zhongmin Qian, Xingcheng Xu
    Acta mathematica scientia,Series B    2024, 44 (5): 1609-1638.   DOI: 10.1007/s10473-024-0501-8
    Abstract158)            Save
    This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting. To tackle this problem, we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path. Our approach is particularly suitable for high-frequency data. To formulate the parameter estimators, we introduce a theory of pathwise Itô integrals with respect to fractional Brownian motion. By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes, we demonstrate that our estimators are strongly consistent and pathwise stable. Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings, and may have practical implications for fields including finance, economics, and engineering.
    Reference | Related Articles | Metrics
    THE GRADIENT ESTIMATE OF SUBELLIPTIC HARMONIC MAPS WITH A POTENTIAL
    Han Luo
    Acta mathematica scientia,Series B    2024, 44 (4): 1189-1199.   DOI: 10.1007/s10473-024-0401-y
    Abstract152)            Save
    In this paper, we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations. Under some suitable conditions, we give the gradient estimates of these maps and establish a Liouville type result.
    Reference | Related Articles | Metrics
    FROM WAVE FUNCTIONS TO TAU-FUNCTIONS FOR THE VOLTERRA LATTICE HIERARCHY
    Ang FU, Mingjin LI, Di YANG
    Acta mathematica scientia,Series B    2024, 44 (2): 405-419.   DOI: 10.1007/s10473-024-0201-4
    Accepted: 16 October 2023
    Online available: 06 December 2023

    Abstract133)      PDF       Save
    For an arbitrary solution to the Volterra lattice hierarchy, the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method. In this paper, we define a pair of wave functions of the solution and use them to give an expression of the matrix resolvent; based on this we obtain a new formula for the $k$-point functions for the Volterra lattice hierarchy in terms of wave functions. As an application, we give an explicit formula of $k$-point functions for the even GUE (Gaussian Unitary Ensemble) correlators.
    Reference | Related Articles | Metrics
    ON THE SOBOLEV DOLBEAULT COHOMOLOGY OF A DOMAIN WITH PSEUDOCONCAVE BOUNDARIES
    Jian CHEN
    Acta mathematica scientia,Series B    2024, 44 (2): 431-444.   DOI: 10.1007/s10473-024-0203-2
    Accepted: 16 October 2023

    Abstract128)      PDF       Save
    In this note, we mainly make use of a method devised by Shaw [15] for studying Sobolev Dolbeault cohomologies of a pseudoconcave domain of the type $\Omega=\widetilde{\Omega} \backslash \overline{\bigcup_{j=1}^{m}\Omega_j}$, where $\widetilde{\Omega}$ and $\{\Omega_j\}_{j=1}^m\Subset\widetilde{\Omega}$ are bounded pseudoconvex domains in $\mathbb{C}^n$ with smooth boundaries, and $\overline{\Omega}_1,\cdots,\overline{\Omega}_m$ are mutually disjoint. The main results can also be quickly obtained by virtue of [5].
    Reference | Related Articles | Metrics
    THE WEIGHTED KATO SQUARE ROOT PROBLEM OF ELLIPTIC OPERATORS HAVING A BMO ANTI-SYMMETRIC PART
    Wenxian MA, Sibei YANG
    Acta mathematica scientia,Series B    2024, 44 (2): 532-550.   DOI: 10.1007/s10473-024-0209-9
    Abstract127)      PDF       Save
    Let $n\ge2$ and let $L$ be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a $\mathrm{BMO}$ anti-symmetric part in $\mathbb{R}^n$. In this article, we consider the weighted Kato square root problem for $L$. More precisely, we prove that the square root $L^{1/2}$ satisfies the weighted $L^p$ estimates $\|L^{1/2}(f)\|_{L^p_\omega(\mathbb{R}^n)}\le C\|\nabla f\|_{L^p_\omega (\mathbb{R}^n;\mathbb{R}^n)}$ for any $p\in(1,\infty)$ and $\omega\in A_p{(\mathbb{R}^n)}$ (the class of Muckenhoupt weights), and that $\|\nabla f\|_{L^p_\omega(\mathbb{R}^n;\mathbb{R}^n)}\le C\|L^{1/2}(f)\|_{L^p_\omega(\mathbb{R}^n)}$ for any $p\in(1,2+\varepsilon)$ and $\omega\in A_p(\mathbb{R}^n)\cap RH_{(\frac{2+\varepsilon}{p})'}(\mathbb{R}^n)$ (the class of reverse Hölder weights), where $\varepsilon\in(0,\infty)$ is a constant depending only on $n$ and the operator $L$, and where $(\frac{2+\varepsilon}{p})'$ denotes the Hölder conjugate exponent of $\frac{2+\varepsilon}{p}$. Moreover, for any given $q\in(2,\infty)$, we give a sufficient condition to obtain that $\|\nabla f\|_{L^p_\omega(\mathbb{R}^n;\mathbb{R}^n)} \le C\|L^{1/2}(f)\|_{L^p_\omega(\mathbb{R}^n)}$ for any $p\in(1,q)$ and $\omega\in A_p(\mathbb{R}^n)\cap RH_{(\frac{q}{p})'}(\mathbb{R}^n)$. As an application, we prove that when the coefficient matrix $A$ that appears in $L$ satisfies the small $\mathrm{BMO}$ condition, the Riesz transform $\nabla L^{-1/2}$ is bounded on $L^p_\omega(\mathbb{R}^n)$ for any given $p\in(1,\infty)$ and $\omega\in A_p(\mathbb{R}^n)$. Furthermore, applications to the weighted $L^2$-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
    Reference | Related Articles | Metrics
    THE LIMITING PROFILE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS WITH A SHRINKING SELF-FOCUSING CORE
    Ke JIN, Ying SHI, Huafei XIE
    Acta mathematica scientia,Series B    2024, 44 (2): 583-608.   DOI: 10.1007/s10473-024-0212-1
    Abstract123)      PDF       Save
    In this paper, we consider the semilinear elliptic equation systems $ \left\{\begin{array}{ll} -\Delta u+u=\alpha Q_{n}(x)|u|^{\alpha-2}|v|^{\beta}u &\mbox{in}\hspace{1.14mm} \mathbb{R}^{N},\\ -\Delta v+v=\beta Q_{n}(x)|u|^{\alpha}|v|^{\beta-2}v &\mbox{in}\hspace{1.14mm} \mathbb{R}^{N}, \end{array} \right. $ where $N\geqslant 3$, $\alpha$, $\beta>1$, $\alpha+\beta<2^{*}$, $2^{*}=\frac{2N}{N-2}$ and $Q_{n}$ are bounded given functions whose self-focusing cores $\{x\in\mathbb{R}^N|Q_n(x)>0\}$ shrink to a set with finitely many points as $n\rightarrow\infty$. Motivated by the work of Fang and Wang [13], we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points, and we build the localized concentrated bound state solutions for the above equation systems.
    Reference | Related Articles | Metrics
    STARLIKENESS ASSOCIATED WITH THE SINE HYPERBOLIC FUNCTION
    Mohsan Raza, Hadiqa Zahid, Jinlin Liu
    Acta mathematica scientia,Series B    2024, 44 (4): 1244-1270.   DOI: 10.1007/s10473-024-0404-8
    Abstract119)            Save
    Let $q_{\lambda }\left( z\right) =1+\lambda \sinh (\zeta ),\ 0<\lambda <1/\sinh \left( 1\right) $ be a non-vanishing analytic function in the open unit disk. We introduce a subclass $\mathcal{S}^{\ast }\left( q_{\lambda }\right) $ of starlike functions which contains the functions $\mathfrak{f}$ such that $z\mathfrak{f}^{\prime }/\mathfrak{f}$ is subordinated by $q_{\lambda }$. We establish inclusion and radii results for the class $\mathcal{S}^{\ast }\left( q_{\lambda }\right) $ for several known classes of starlike functions. Furthermore, we obtain sharp coefficient bounds and sharp Hankel determinants of order two for the class $\mathcal{S}^{\ast }\left( q_{\lambda }\right) $. We also find a sharp bound for the third Hankel determinant for the case $\lambda =1/2$.
    Reference | Related Articles | Metrics
    SUMS OF DUAL TOEPLITZ PRODUCTS ON THE ORTHOGONAL COMPLEMENTS OF FOCK-SOBOLEV SPACES
    Yong CHEN, Young Joo LEE
    Acta mathematica scientia,Series B    2024, 44 (3): 810-822.   DOI: 10.1007/s10473-024-0302-0
    Abstract117)            Save
    We consider dual Toeplitz operators on the orthogonal complements of the ock-Sobolev spaces of all nonnegative real orders. First, for symbols in a certain class containing all bounded functions, we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero. Next, for bounded symbols, we construct a symbol map and exhibit a short exact sequence associated with the $C^*$-algebra generated by all dual Toeplitz operators with bounded symbols.
    Reference | Related Articles | Metrics
    MEAN SENSITIVITY AND BANACH MEAN SENSITIVITY FOR LINEAR OPERATORS
    Quanquan Yao, Peiyong Zhu
    Acta mathematica scientia,Series B    2024, 44 (4): 1200-1228.   DOI: 10.1007/s10473-024-0402-x
    Abstract116)            Save
    Let $(X,T)$ be a linear dynamical system, where $X$ is a Banach space and $T:X \to X$ is a bounded linear operator. This paper obtains that $(X,T)$ is sensitive (Li-Yorke sensitive, mean sensitive, syndetically mean sensitive, respectively) if and only if $(X,T)$ is Banach mean sensitive (Banach mean Li-Yorke sensitive, thickly multi-mean sensitive, thickly syndetically mean sensitive, respectively). Several examples are provided to distinguish between different notions of mean sensitivity, syndetic mean sensitivity and mean Li-Yorke sensitivity.
    Reference | Related Articles | Metrics
    ESTIMATION OF AVERAGE DIFFERENTIAL ENTROPY FOR A STATIONARY ERGODIC SPACE-TIME RANDOM FIELD ON A BOUNDED AREA*
    Zhanjie SONG, Jiaxing ZHANG
    Acta mathematica scientia,Series B    2024, 44 (5): 1984-1996.   DOI: 10.1007/s10473-024-0521-4
    Abstract116)            Save
    In this paper, we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field. By estimating the probability value of a time-stationary random field in a small range, we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region. It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1. In addition, we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
    Reference | Related Articles | Metrics
    THE LONG TIME BEHAVIOR OF THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS WITH LINEAR SELF-REPELLING DRIFT
    Xiaoyu XIA, Litan YAN, Qing YANG
    Acta mathematica scientia,Series B    2024, 44 (2): 671-685.   DOI: 10.1007/s10473-024-0216-x
    Abstract113)      PDF       Save
    Let $B^{H} $ be a fractional Brownian motion with Hurst index $\frac{1}{2}\leq H< 1$. In this paper, we consider the equation (called the Ornstein-Uhlenbeck process with a linear self-repelling drift) $\begin{equation*} {\rm d}X_{t}^{H}={\rm d}B_{t}^{H}+\sigma X_t^{H}{\rm d}t+\nu {\rm d}t-\theta \left(\int_{0}^{t}(X_t^{H}-X_{s}^{H}){\rm d}s\right){\rm d}t, \end{equation*} $ where $\theta<0$, $\sigma,\nu \in \mathbb{R}$. The process is an analogue of {self-attracting} diffusion (Cranston, Le Jan. Math Ann, 1995, 303: 87-93). Our main aim is to study the large time behaviors of the process. We show that the solution $X^H$ diverges to infinity as $t$ tends to infinity, and obtain the speed at which the process $X^H$ diverges to infinity as $t$ tends to infinity.
    Reference | Related Articles | Metrics
    BLOW-UP CONDITIONS FOR A SEMILINEAR PARABOLIC SYSTEM ON LOCALLY FINITE GRAPHS
    Yiting WU
    Acta mathematica scientia,Series B    2024, 44 (2): 609-631.   DOI: 10.1007/s10473-024-0213-0
    Abstract111)      PDF       Save
    In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition $CDE'(n,0)$, the polynomial volume growth of degree $m$, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).
    Reference | Related Articles | Metrics
    SHARP MORREY REGULARITY THEORY FOR A FOURTH ORDER GEOMETRICAL EQUATION
    Changlin XIANG, Gaofeng ZHENG
    Acta mathematica scientia,Series B    2024, 44 (2): 420-430.   DOI: 10.1007/s10473-024-0202-3
    Accepted: 16 October 2023
    Online available: 06 December 2023

    Abstract108)      PDF       Save
    This paper is a continuation of recent work by Guo-Xiang-Zheng[10]. We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation $\begin{equation*} \Delta^{2}u=\Delta(V\nabla u)+{\rm div}(w\nabla u)+(\nabla\omega+F)\cdot\nabla u+f\qquad\text{in }B^{4},\end{equation*}$ under the smallest regularity assumptions of $V,w,\omega, F$, where $f$ belongs to some Morrey spaces. This work was motivated by many geometrical problems such as the flow of biharmonic mappings. Our results deepens the $L^p$ type regularity theory of [10], and generalizes the work of Du, Kang and Wang [4] on a second order problem to our fourth order problems.
    Reference | Related Articles | Metrics
    THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARD POTENTIAL
    Lvqiao LIU, Juan ZENG
    Acta mathematica scientia,Series B    2024, 44 (2): 455-473.   DOI: 10.1007/s10473-024-0205-0
    Accepted: 16 October 2023
    Online available: 06 December 2023

    Abstract107)      PDF       Save
    In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary $L^2$ weighted estimates.
    Reference | Related Articles | Metrics
    THE RIEMANN PROBLEM FOR ISENTROPIC COMPRESSIBLE EULER EQUATIONS WITH DISCONTINUOUS FLUX*
    Yinzheng Sun, Aifang Qu, Hairong Yuan
    Acta mathematica scientia,Series B    2024, 44 (1): 37-77.   DOI: 10.1007/s10473-024-0102-6
    Abstract107)      PDF       Save
    We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux, more specifically, for pressureless flow on the left and polytropic flow on the right separated by a discontinuity $x=x(t)$. We prove that this problem admits global Radon measure solutions for all kinds of initial data. The over-compressing condition on the discontinuity $x=x(t)$ is not enough to ensure the uniqueness of the solution. However, there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve $x=x(t)+0$, in addition to the full adhesion condition on its left-side. As an application, we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas. In particular, we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas. This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
    Reference | Related Articles | Metrics
    APPROXIMATION PROBLEMS ON THE SMOOTHNESS CLASSES*
    Yongping LIU, Man LU
    Acta mathematica scientia,Series B    2024, 44 (5): 1721-1734.   DOI: 10.1007/s10473-024-0505-4
    Abstract106)            Save
    This paper investigates the relative Kolmogorov $n$-widths of $2\pi$-periodic smooth classes in $\widetilde{L}_{q}$. We estimate the relative widths of $\widetilde{W}^{r} H_{p}^{\omega}$ and its generalized class $K_{p}H^{\omega}(P_{r})$, where $K_{p}H^{\omega}(P_{r})$ is defined by a self-conjugate differential operator $P_{r}(D)$ induced by $P_{r}(t):= t^{\sigma} \Pi_{j=1}^{l}(t^{2}- t_{j}^{2}),~t_{j} > 0,~j=1, 2 ,\cdots, l,~l \geq 1,~\sigma \geq 1,~r=2l+\sigma .$ Also, the modulus of continuity of the $r$-th derivative, or $r$-th self-conjugate differential, does not exceed a given modulus of continuity $\omega$. Then we obtain the asymptotic results, especially for the case $p=\infty , 1\leq q \leq \infty$.
    Reference | Related Articles | Metrics
    CLASSIFICATIONS OF DUPIN HYPERSURFACES IN LIE SPHERE GEOMETRY*
    Thomas E. Cecil
    Acta mathematica scientia,Series B    2024, 44 (1): 1-36.   DOI: 10.1007/s10473-024-0101-7
    Abstract106)      PDF       Save
    This is a survey of local and global classification results concerning Dupin hypersurfaces in $S^n$ (or ${\bf R}^n$) that have been obtained in the context of Lie sphere geometry. The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres. Along with these classification results, many important concepts from Lie sphere geometry, such as curvature spheres, Lie curvatures, and Legendre lifts of submanifolds of $S^n$ (or ${\bf R}^n$), are described in detail. The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.
    Reference | Related Articles | Metrics
    THREE KINDS OF DENTABILITIES IN BANACH SPACES AND THEIR APPLICATIONS
    Zihou ZHANG, Jing ZHOU
    Acta mathematica scientia,Series B    2024, 44 (2): 445-454.   DOI: 10.1007/s10473-024-0204-1
    Accepted: 16 October 2023
    Online available: 06 December 2023

    Abstract105)      PDF       Save
    In this paper, we study some dentabilities in Banach spaces which are closely related to the famous Radon-Nikodym property. We introduce the concepts of the weak$^*$-weak denting point and the weak$^*$-weak$^*$ denting point of a set. These are the generalizations of the weak$^*$ denting point of a set in a dual Banach space. By use of the weak$^*$-weak denting point, we characterize the very smooth space, the point of weak$^*$-weak continuity, and the extreme point of a unit ball in a dual Banach space. Meanwhile, we also characterize an approximatively weak compact Chebyshev set in dual Banach spaces. Moreover, we define the nearly weak dentability in Banach spaces, which is a generalization of near dentability. We prove the necessary and sufficient conditions of the reflexivity by nearly weak dentability. We also obtain that nearly weak dentability is equivalent to both the approximatively weak compactness of Banach spaces and the $w$-strong proximinality of every closed convex subset of Banach spaces.
    Reference | Related Articles | Metrics