Acta mathematica scientia,Series A ›› 2010, Vol. 30 ›› Issue (1): 42-53.
• Articles • Previous Articles Next Articles
WANG Hong-Chu, HU Shi-Geng
Received:
2007-11-08
Revised:
2009-05-31
Online:
2010-01-01
Published:
2010-01-01
Supported by:
国家自然科学基金(10826095, 10801056)资助
CLC Number:
WANG Hong-Chu, HU Shi-Geng. Exponential Stability for Stochastic Neural Networks with Multiple Delays: an LMI Approach[J].Acta mathematica scientia,Series A, 2010, 30(1): 42-53.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Marcus C, Westervelt R. Stability of analog neural network with delay. Phys Rev A, 1989, 39(1): 347--359 [2] Arik S. Stability analysis of delayed neural networks with time delay. IEEE Trans Circuits Syst, 2000, 47: 1089--1092 [3] Liao X, Chen G, Sanchez E. Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Networks, 2002, 15: 855--866 [4] Sun C, Zhang K, Fei S, Feng C. On exponential stability of delayed neural networks with a general class of activation functions. Physics letters A, 2002, 298: 122--132 [5] 刘炳文, 黄立宏. 时滞细胞神经网络概周期解的存在性与全局指数稳定性. 数学物理学报, 2007, 27A(6): 1082--1088 [6] Chu T, Wang Z, Wang L. Exponential convergence estimates for neural networks with multiple delays. IEEE Transactions on Circuits and Systems I, 2002, 49(12): 1829--1832 [7] Ensari T, Arik S. Global stability analysis of neural networks with multiple time varying delays. IEEE Trans Auto Control, 2005, 50(11): 1781--1784 [8] Liao X, Li C. An LMI approach to asymptotical stability of multi-delayed neural networks. Physica D, 2005, 200: 139--155 [9] Lu H, Shen R, Chung F. Absolute exponential stability of a class of recurrent neural networks with multiple and variable delays. Theoretical Computer Science, 2005, 344(2): 103--119 [10] Wang B, Zhong S, Liu X. Asymptotical stability criterion on neural networks with multiple time-varying delays. Applied Mathematics and Computation, 2008, 195(2): 809--818 [11] 沈轶, 赵勇, 廖晓昕, 杨叔子. 具有可变时滞的 Hopfield 型随机神经网络的指数稳定性. 数学物理学报, 2000, 20(3): 400--404 [12] Liao X, Mao X. Exponential stability and instability of stochastic neural networks, stochast. Anal Appl, 1996, 14(2): 165--185 [13] Liao X, Mao X. Stability of stochastic neural networks. Neural Parallel Sci Comput, 1996, 4(2): 205--224 [14] Mao X. Stability of stochastic delay neural networks. Journal of the Franklin Institute, 2001, 338: 481--495 [15] Joy M. Exponential Stability of Stochastic Retarded Neural Networks. Bruges: Belgium, 2005: 27--29 [16] 罗琦, 邓飞其,包俊东. 随机分布参数型Hopfield时滞神经网络的稳定性. 数学物理学报, 2006, 26A(6): 968--977 [17] Wan L, Sun J. Mean square exponential stability of stochastic delayed Hopfield neural networks. Physics Letters A, 2005, 343(4): 306-318 [18] Sun Y, Cao J. Pth moment exponential stability of stochastic recurrent neural networks with time-varying delays. Nonlinear Analysis: Real World Applications, 2007, 8: 1171--1185 [19] Huang K, Cao J. Exponential stability analysis of uncertain stochastic neural networks with multiple delays. Nonlinear Analysis:Real World Applications, 2007, 8: 646--653 [20] Hou Y, Liao T, Yan J. Global asymptotic stability for a class of nonlinear neural networks with multiple delays. Nonlinear Analysis, 2007, 67: 3037--3040 [21] Huang C, He Y, Chen P. Dynamic analysis of stochastic recurrent neural networks. Neural Process Letters, 2008, 27: 267--276 [22] 俞立. 鲁棒控制: 线性矩阵不等式处理方法. 北京: 清华大学出版社, 2002 [23] Lü J, Yu X, Chen G, Cheng D. Characterizing the synchronizability of small-world dynamical networks. IEEE Trans Circuits Syst I, 2004, 51(4): 787--796 [24] Lü J, Chen G. A time-varying complex dynamical network models and its controlled synchronization criteria. IEEE Transactions on Automatic Control, 2005, 50(6): 841--846 [25] Zhou J, Lu J, Lü J. Adaptive synchronization of an uncertain complex dynamical network. IEEE Transactions on Automatic Control, 2006, 51(4): 652--656 [26] Zhou J, Lu J, Lü J. Pinning adaptive synchronization of a general complex dynamical network. Automatica, 2008, 44(4): 996--1003 |
|