Acta mathematica scientia,Series A ›› 2000, Vol. 20 ›› Issue (3): 309-313.
• Articles • Previous Articles Next Articles
Online:
Published:
Abstract:
The main result of this paper is that stable Banach space with an unconditional monotone Schauder basis is reflexive if and only if it has the fixed point property.
Key words: Nonexpansivemapping, StableBanachspace, Fixedpoint, Ultraproduct
CLC Number:
Hu Changsong. The Fixed Point Property of Stable Banach Spaces with An Unconditional Schauder Basis[J].Acta mathematica scientia,Series A, 2000, 20(3): 309-313.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://actams.apm.ac.cn/sxwlxbA/EN/
http://actams.apm.ac.cn/sxwlxbA/EN/Y2000/V20/I3/309
1 DowlingPN,LennardCJ.EverynonreflexivesubspaceofL1[0,1]failsthefixedpointproperty.ProcAmerMathSoc,1997,125(2):443-446 2 MaureyB.PointsfixesdescontractionsdecertainsfaiblementcompactsdeL1 .Seminaired'AnalyseFonctionelleExposenoⅧ EcolePolytechniqueCentredeMathematiques.1980-1981 3 GarlingDJH.StableBanachspace,random measuresandOrliczfunctionspaces,LectureNotesinMathematics928,BerlinHeidelbergNew York:SpringerVerlag,1982 4 LinPK.Unconditionalbasesandfixedpointsofnonexpansivemappings.PacJMath,1985,116:69-75 5 KarlovitzLA.Existenceoffixedpointsfornonexpansivemappingsinspacewithoutnormalstructure.PacJMath,1976,66:153-159
Cited